001     902445
005     20240708132900.0
024 7 _ |a 10.1016/j.jpowsour.2021.230765
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a 2128/29079
|2 Handle
024 7 _ |a WOS:000720745000001
|2 WOS
037 _ _ |a FZJ-2021-04267
082 _ _ |a 620
100 1 _ |a Liu, Yujian
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A niobium-substituted sodium superionic conductor with conductivity higher than 5.5 mS cm−1 prepared by solution-assisted solid-state reaction method
260 _ _ |a New York, NY [u.a.]
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1637591940_535
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Although research on all-solid-state sodium batteries (ASSSBs) have been conducted for many years, the solidstateelectrolyte (SSE) material is still far from practical application at room temperature. One major reason isthat no suitable electrolyte material with high ionic conductivity has been found yet. In this study, Nb5+ isintroduced into NASICON-type solid electrolyte, where Nb5+ substituted Na3.4Zr2Si2.4P0.6O12 (NZSP) is preparedby a solution-assisted solid-state reaction method. The best ionic conductivity is as high as 5.51 mS cm􀀀 1 which isa significant improvement. High-frequency electrochemical impedance spectroscopy shows that the increase intotal conductivity is mainly due to the decrease of grain boundary impedance as well as bulk impedance. Thedecrease in grain boundary impedance is probably owing to the increase in density of the electrolyte materialafter incorporation of the Nb content, which has a beneficial impact of the sintering of NZSP. The decrease inbulk impedance rather results from the ratio of sodium ion concentration and sodium vacancy concentration of3.3:0.7 in the crystal structure, thus facilitating the sodium ion transport. Symmetric cells with sodium metal aselectrodes (Na|Nb5+ substituted NZSP|Na) are subsequently assembled and cycled stably for 60 cycles at acurrent density of 0.05 mA/cm2.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Liu, Limin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Peng, Jinsong
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zhou, Xiaoliang
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
700 1 _ |a Liang, Dongshi
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zhao, Lei
|0 P:(DE-Juel1)159406
|b 5
700 1 _ |a Su, Jiawen
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Zhang, Bo
|0 P:(DE-Juel1)151345
|b 7
700 1 _ |a Li, Si
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Zhang, Naiqing
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Ma, Qianli
|0 P:(DE-Juel1)129628
|b 10
|e Corresponding author
700 1 _ |a Tietz, Frank
|0 P:(DE-Juel1)129667
|b 11
773 _ _ |a 10.1016/j.jpowsour.2021.230765
|g Vol. 518, p. 230765 -
|0 PERI:(DE-600)1491915-1
|p 230765 -
|t Journal of power sources
|v 518
|y 2022
|x 0378-7753
856 4 _ |u https://juser.fz-juelich.de/record/902445/files/Manuscript.docx
|y Published on 2021-11-12. Available in OpenAccess from 2023-11-12.
909 C O |o oai:juser.fz-juelich.de:902445
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)129628
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)129667
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2021
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-13
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-13
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2021
|d 2022-11-13
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21