Hauptseite > Publikationsdatenbank > A niobium-substituted sodium superionic conductor with conductivity higher than 5.5 mS cm−1 prepared by solution-assisted solid-state reaction method > print |
001 | 902445 | ||
005 | 20240708132900.0 | ||
024 | 7 | _ | |a 10.1016/j.jpowsour.2021.230765 |2 doi |
024 | 7 | _ | |a 0378-7753 |2 ISSN |
024 | 7 | _ | |a 1873-2755 |2 ISSN |
024 | 7 | _ | |a 2128/29079 |2 Handle |
024 | 7 | _ | |a WOS:000720745000001 |2 WOS |
037 | _ | _ | |a FZJ-2021-04267 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Liu, Yujian |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a A niobium-substituted sodium superionic conductor with conductivity higher than 5.5 mS cm−1 prepared by solution-assisted solid-state reaction method |
260 | _ | _ | |a New York, NY [u.a.] |c 2022 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1637591940_535 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Although research on all-solid-state sodium batteries (ASSSBs) have been conducted for many years, the solidstateelectrolyte (SSE) material is still far from practical application at room temperature. One major reason isthat no suitable electrolyte material with high ionic conductivity has been found yet. In this study, Nb5+ isintroduced into NASICON-type solid electrolyte, where Nb5+ substituted Na3.4Zr2Si2.4P0.6O12 (NZSP) is preparedby a solution-assisted solid-state reaction method. The best ionic conductivity is as high as 5.51 mS cm 1 which isa significant improvement. High-frequency electrochemical impedance spectroscopy shows that the increase intotal conductivity is mainly due to the decrease of grain boundary impedance as well as bulk impedance. Thedecrease in grain boundary impedance is probably owing to the increase in density of the electrolyte materialafter incorporation of the Nb content, which has a beneficial impact of the sintering of NZSP. The decrease inbulk impedance rather results from the ratio of sodium ion concentration and sodium vacancy concentration of3.3:0.7 in the crystal structure, thus facilitating the sodium ion transport. Symmetric cells with sodium metal aselectrodes (Na|Nb5+ substituted NZSP|Na) are subsequently assembled and cycled stably for 60 cycles at acurrent density of 0.05 mA/cm2. |
536 | _ | _ | |a 1223 - Batteries in Application (POF4-122) |0 G:(DE-HGF)POF4-1223 |c POF4-122 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Liu, Limin |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Peng, Jinsong |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Zhou, Xiaoliang |0 P:(DE-HGF)0 |b 3 |e Corresponding author |
700 | 1 | _ | |a Liang, Dongshi |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Zhao, Lei |0 P:(DE-Juel1)159406 |b 5 |
700 | 1 | _ | |a Su, Jiawen |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Zhang, Bo |0 P:(DE-Juel1)151345 |b 7 |
700 | 1 | _ | |a Li, Si |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Zhang, Naiqing |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Ma, Qianli |0 P:(DE-Juel1)129628 |b 10 |e Corresponding author |
700 | 1 | _ | |a Tietz, Frank |0 P:(DE-Juel1)129667 |b 11 |
773 | _ | _ | |a 10.1016/j.jpowsour.2021.230765 |g Vol. 518, p. 230765 - |0 PERI:(DE-600)1491915-1 |p 230765 - |t Journal of power sources |v 518 |y 2022 |x 0378-7753 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/902445/files/Manuscript.docx |y Published on 2021-11-12. Available in OpenAccess from 2023-11-12. |
909 | C | O | |o oai:juser.fz-juelich.de:902445 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)129628 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)129667 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1223 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-28 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2022-11-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-13 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J POWER SOURCES : 2021 |d 2022-11-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-13 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-13 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J POWER SOURCES : 2021 |d 2022-11-13 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|