| 001 | 902465 | ||
| 005 | 20211130111056.0 | ||
| 024 | 7 | _ | |a 10.1016/j.chroma.2021.462412 |2 doi |
| 024 | 7 | _ | |a 0021-9673 |2 ISSN |
| 024 | 7 | _ | |a 0376-737x |2 ISSN |
| 024 | 7 | _ | |a 0378-4355 |2 ISSN |
| 024 | 7 | _ | |a 2128/29028 |2 Handle |
| 024 | 7 | _ | |a altmetric:109655201 |2 altmetric |
| 024 | 7 | _ | |a pmid:34320430 |2 pmid |
| 024 | 7 | _ | |a WOS:000677692300009 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-04284 |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Beck, Jürgen |0 0000-0002-4160-7760 |b 0 |
| 245 | _ | _ | |a Patterns of protein adsorption in ion-exchange particles and columns: Evolution of protein concentration profiles during load, hold, and wash steps predicted for pore and solid diffusion mechanisms |
| 260 | _ | _ | |a New York, NY [u.a.] |c 2021 |b Science Direct |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1637062674_17048 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Elucidation of protein transport mechanism in ion exchanges is essential to model separation performance. In this work we simulate intraparticle adsorption profiles during batch adsorption assuming typical process conditions for pore, solid and parallel diffusion. Artificial confocal laser scanning microscopy images are created to identify apparent differences between the different transport mechanisms. Typical sharp fronts for pore diffusion are characteristic for Langmuir equilibrium constants of KL ≥1. Only at KL = 0.1 and lower, the profiles are smooth and practically indistinguishable from a solid diffusion mechanism. During hold and wash steps, at which the interstitial buffer is removed or exchanged, continuation of diffusion of protein molecules is significant for solid diffusion due to the adsorbed phase concentration driving force. For pore diffusion, protein mobility is considerable at low and moderate binding strength. Only when pore diffusion if completely dominant, and the binding strength is very high, protein mobility is low enough to restrict diffusion out of the particles. Simulation of column operation reveals substantial protein loss when operating conditions are not adjusted appropriately. |
| 536 | _ | _ | |a 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217) |0 G:(DE-HGF)POF4-2172 |c POF4-217 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a von Lieres, Eric |0 P:(DE-Juel1)129081 |b 1 |
| 700 | 1 | _ | |a Zaghi, Negar |0 0000-0002-4462-2077 |b 2 |
| 700 | 1 | _ | |a Leweke, Samuel |0 P:(DE-Juel1)139548 |b 3 |
| 700 | 1 | _ | |a Carta, Giorgio |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Hahn, Rainer |0 P:(DE-HGF)0 |b 5 |e Corresponding author |
| 773 | _ | _ | |a 10.1016/j.chroma.2021.462412 |g Vol. 1653, p. 462412 - |0 PERI:(DE-600)1491247-8 |p 462412 - |t Journal of chromatography / A |v 1653 |y 2021 |x 0021-9673 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/902465/files/1-s2.0-S0021967321005367-main.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:902465 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129081 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)139548 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2172 |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2021-02-04 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-04 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-02-04 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-02-04 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CHROMATOGR A : 2019 |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-04 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-02-04 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-04 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBG-1-20101118 |k IBG-1 |l Biotechnologie |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IBG-1-20101118 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|