
TopProperty: Robust Meta-prediction of 

Transmembrane and Globular Protein Features 

using Deep Neural Networks 

Daniel Mulnaes1†, Stephan Schott-Verdugo2†, Filip Koenig1, and Holger Gohlke1,2* 

 

† These authors contributed equally to this work. 

 

1Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität 

Düsseldorf, 40225 Düsseldorf, Germany 

2John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), 

Institute of Biological Information Processing (IBI-7: Structural Bioinformatics), and Institute 

of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Wilhelm-

Johnen-Str., 52425 Jülich, Germany 

 

Author ORCID 

Daniel Mulnaes: 0000-0003-2162-5918 

Stephan Schott-Verdugo: 0000-0003-0735-1404 

Filip Koenig: 0000-0003-0852-440X 

Holger Gohlke: 0000-0001-8613-1447 

 

*Address: Universitätsstr. 1, 40225 Düsseldorf, Germany. 

Phone: (+49) 211 81 13662; Fax: (+49) 211 81 13847 

E-mail: gohlke@uni-duesseldorf.de   



Abstract 

Transmembrane proteins (TMPs) are critical components of cellular life. However, due to 

experimental challenges, the number of experimentally resolved TMP structures is severely 

underrepresented in databases compared to their cellular abundance. Prediction of (per-residue) 

features such as transmembrane topology, membrane exposure, secondary structure, and 

solvent accessibility can be a useful starting point for experimental design or protein structure 

prediction, but often requires different computational tools for different features or types of 

proteins. We present TopProperty, a meta-predictor that predicts all of these features for TMPs 

or globular proteins. TopProperty is trained on datasets without bias towards a high number of 

sequence homologs, and the predictions are significantly better than the evaluated state-of-the-

art primary predictors on all quality metrics. TopProperty eliminates the need for protein type- 

or feature-tailored tools, specifically for TMPs. TopProperty is freely available as web server 

and standalone at https://cpclab.uni-duesseldorf.de/topsuite/. 

Introduction  

Transmembrane proteins (TMPs) play a vital role in both eukaryotic and prokaryotic cells. They 

are essential for several cellular processes, including signal transduction, molecular 

transportation, energy production, and cell adhesion 1. Despite making up 20-30% of various 

genomes including the human one 2-4, TMPs constitute only a small fraction of the resolved 

protein structures available today 5-6 due to experimental challenges in structure determination. 

Interestingly, it is estimated that more than half of the currently used drug targets are TMPs 7. 

TMPs generally fall into two major categories: Transmembrane α-helical 

bundles/anchors (TMHs) and transmembrane β-barrels (TMBs). While TMHs have seen a lot 

of scientific attention 1, TMBs are much more sparsely studied, as evident by both the number 

of experimentally resolved structures and the number of computational methods dedicated to 

each type 8-9. Due to the location of TMPs in a bilayer environment and the anisotropic structure 

of cellular membranes, TMPs expose hydrophobic residues to the protein surface in the 

transmembrane region, while having hydrophilic residues exposed in water environments. As 

such, the Transmembrane Topology (TMT) reveals significant information regarding the way 

a TMP structure is folded and placed within the membrane. Thus, TMT predictions provide 

low-resolution information for TMPs, which can be a helpful starting point for experimental 

design or as constraints for protein structure prediction 1, especially when used alongside other 

linear features such as secondary structure (SS) 10-13, relative solvent accessibility (RSA) 11, 13-



17, and residue-residue contacts and distances 18. Furthermore, some methods have focussed on 

identifying membrane exposed (ME) residues based on lipophilicity 8, 19 and helix-helix 

interactions 20 to be used as modeling constraints. 

While general features such as SS and RSA have frequently been predicted using deep 

learning techniques, TMT and ME features have seen less attention from the deep learning 

community due to a higher focus on residue-residue contacts and distance predictions 21-22. Two 

classical issues with standard deep neural networks (DNNs) are the vanishing gradient problem 
23 and different random initializations leading to different minima for identical model 

architectures 21, 24. Nowadays, these issues have largely been resolved with the introduction of 

Residual networks 25 and the development of drop-out 26, which has become widely used in 

bioinformatics applications such as SS 27, residue contact prediction 21, and domain boundary 

prediction 28.  

So far, the prediction of the different types of linear features mentioned above has often 

required different methods specific to the protein or feature in question. In this work, we present 

TopProperty, a meta-predictor that predicts TMT of both TMHs and TMBs as well as linear 

features such as SS, RSA, and ME using DNNs, making it applicable irrespective if a protein 

is a TMP or not. TopProperty improves the prediction of these features over existing methods 

and makes predictions easier for the user and agnostic to the type of protein submitted to the 

server. Finally, TopProperty shows robust results, particularly for proteins with a low number 

of sequence homologs, making it particularly suitable for de novo predictions. TopProperty 

shows better performance than state-of-the-art primary predictors in terms of Q3 scores, MCC 

values, and correlation coefficients for both TMPs and globular proteins 1. 

Materials and Methods 

Workflow. The goal of TopProperty is to give robust and accurate predictions of SS, RSA, 

TMT, and ME. The TopProperty workflow has three steps described below and shown in Figure 

1: 

1. Primary Predictors. The input sequence is submitted to 11 primary predictors to 

calculate 123 SS/RSA features and 16 primary predictors to calculate 129 TMT/ME 

features (see Input Features section below). 

2. DNNs. Features are predicted using two ensembles of 1D residue-wise DNNs. The 

first predicts SS/RSA and the second TMT and ME. Each DNN in the ensemble has 

a different sliding window size to capture different amounts of local and non-local 

information. 



3. Post Processing. The output of each of the different DNNs in a given ensemble is 

combined into a single score for each residue using a weighted average according 

to the performance of each of the different DNNs across the training dataset (MCC 

values for classification networks, Pearson’s R2 for RSA predictions). This weighted 

average is presented as the TopProperty prediction for SS, RSA, and ME. For TMT 

predictions, we found that, in rare cases, the DNNs directly interchanged between 

intracellular (I) and extracellular/luminal (O) labels, leading to predictions where 

they transitioned directly from one to the other without a membrane label in 

between. This was resolved by assigning each solvent-exposed segment the majority 

label for the segment and inverting minority labels. 

 
Figure 1. TopProperty Architecture. The target sequence is first submitted to 11 SS/SA primary predictors and 16 

TMT/ME primary predictors to generate 123 SS/SA features and 129 TMT/ME features. These input features are 

used to predict SS/SA and TMT/ME using two ensembles of DNN’s that use sliding windows of different sizes to 

capture local and non-local structural elements. Finally, the outputs of the different DNN’s are combined using a 

weighted mean and provided to the user. 

 

Datasets. Studies have found that many datasets used for contact prediction show a bias 

towards targets with many homologous sequences available 29. This, in turn, leads to a 

significant overestimation of prediction performance for de novo cases, for which such 

abundance is rarely available. Thus, special care should be taken to generate unbiased datasets 

with respect to the number of sequence homologs. 

 For TopProperty, we generated four datasets (see Table S1 for the corresponding PDB 

IDs). The first dataset, termed the general training set, is based on the PDB and used for the 

training of predictors of secondary structure (SS) and solvent accessibility (SA). The second 

dataset is based on the NOUMENON dataset 29 and used to evaluate SS and SA predictions. 

This dataset is termed the NOUMENON test set. The last two datasets are based on the 

Orientation of Proteins in Membranes (OPM) database 30 and are used for training and 



evaluation of Transmembrane Topology (TMT) and Membrane Exposure (ME). These are 

termed the OPM training set and OPM test set, respectively. 

General training set. To avoid bias towards systems with a high number of sequence homologs 

in our training set, the proteins of the general training set were culled from the PDB using the 

PISCES server 31. The culling criteria were a pairwise sequence identity < 20%, resolution < 2 

Å, and length < 500 residues. Non-terminal missing loops in the 3D structure were added using 

Rosetta 3.6 32 and the loop building method in Modeller9 33. This repair is necessary to obtain 

a sequence and structure for which the true features can be determined for each residue. To 

measure the amount of sequence information, we use the number of effective sequences in an 

MSA generated by HHBLITS 34 (γ) divided by the length of the target sequence (δ). This 

measure (γ/δ) is termed the Neff ratio. Compared to other datasets 29, no bias towards targets 

with a high number of sequence homologs is present in this dataset. Indeed, 23% of the targets 

have a Neff ratio less than 1, and 67% have a Neff ratio less than 10. Robustness to low amounts 

of sequence information is essential when predicting features for TMPs, which are likely to 

have shallower alignments. The final size of the general training set is 3235 proteins. 

NOUMENON test set. For evaluation of TopProperty globular predictions, we used the 

NOUMENON dataset 29 after removing 23 proteins that overlap with the general training set. 

The NOUMENON dataset is designed to contain challenging protein targets with a low amount 

of available sequence information. Missing regions were rebuilt as for the general training set. 

The final size of the NOUMENON test set is 127 proteins. 

OPM datasets. The number of resolved transmembrane protein structures is significantly 

smaller than the number of globular proteins. Therefore, we selected all chains from the OPM 

database 30 and clustered them at 70% sequence identity using CDhit 35. Due to experimental 

difficulties when resolving structures of TMPs, many OPM entries are partially incomplete, and 

others are only partially transmembrane. To obtain a dataset containing complete structures 

with minimal information loss, we, therefore, used the following workflow: 

1. Only TMPs were selected from the OPM, requiring that at least one protein residue must 

be within 5Å of the center of the membrane to be considered. 

2. The biological sequence (without experimental artifacts such as missing or non-standard 

residues) of each structure was matched to the resolved sequence (which may have 

missing or altered residues) using MAFFT7 36. If the identity was over 90% and the 

chain ID matched the OPM, the sequence is matched to that chain; otherwise, it is 

matched to the chain with the highest identity.  



3. Based on the matched sequences, the structures were repaired as for the general training 

set. During repair, unstructured termini were removed, and unresolved loops were 

inserted if the size is < 20 residues and replaced with 20 glycine residues otherwise. 

4. DDOMAIN 37 is used to parse each structure into domains. Only TM domains, and TM-

adjacent domains, were kept. This decreases the size of large, partially-TM systems, 

while maintaining potential interactions between TM and TM adjacent domains and 

improving the TMT class balance. 

5. To establish if the repair procedure changed the input structures significantly, the 

repaired structures are aligned to their raw OPM structure 38, and the Cα atom Root Mean 

Square Deviation (RMSD) is calculated for non-loop residues (according to DSSP 39). 

Proteins with RMSDs > 3 Å were removed. 

6. Proteins were re-clustered at 70% sequence identity using CDhit, using the sequences 

of the repaired structures rather than the full sequence. Structures > 1000 residues or 

< 25 residues were removed. The final structures were superimposed to the original 

OPM entry to recover the membrane orientation. 

The final OPM dataset contains 1165 continuous TMPs, with missing residues either repaired 

or replaced with poly-glycine loops. This is almost an order of magnitude larger than the dataset 

used for benchmarking CCTOP 1, a well-known transmembrane topology meta-predictor. 

While the OPM database is not an experimental database, it is a widely trusted source of 

membrane protein information. The OPM dataset entries used for training are single chains, 

since none of the primary predictors are able to handle multi-chain systems. In some cases, this 

single-chain limitation may alter ME labels, e.g., for targets where multiple transmembrane 

segments interact in the biological unit. However, overall we expect this effect to be minor and 

opted to keep single-chain prediction to enable a fair comparison to existing methods. Because 

the dataset contains homologs of all TMPs, it is important to split it into training and test sets 

carefully. We clustered the dataset with MMSeqs2 40 to 20% identity and separated the dataset 

by clusters into training and test. To do so, we used a multiple steepest descent algorithm, which 

calculates the distribution of different control variables and optimizes the distribution similarity 

between training- and test-set, while ensuring that, between the splits, no two proteins share 

more than 20% identity. This is done similarly as in 28. The control variables were selected to 

minimize bias in the dataset splitting. We controlled for the relative proportion of TMHs and 

TMBs as well as distributions of protein length, Neff ratio (amount of sequence information), 

and prediction difficulty (PHOBIUS Q3 score for TMHs and BOCTOPUS Q3 Score for 

TMBs). 



The two datasets are denoted as the OPM training set and OPM test set, respectively. 

The OPM training set contains 933 proteins (80%), totaling 266880 residues (80%). The OPM 

test set contains 232 proteins (20%) and 66773 residues (20%). A single protein (1KQFC) was 

omitted from the test evaluation set, as it was also included in the general training set. The ratio 

of TMH to TMB proteins was 8.6:1 in both datasets. Between the training and test set, no two 

proteins have more than 20% identity, but the datasets are otherwise similar in terms of their 

difficulty, protein size, and TMH/TMB compositions. 

Input Features. For the predictions of SS and RSA, the input features of TopProperty include: 

1. Secondary Structure (SS) predicted by NetSurfP 14, SSpro5ab initio 
16, DeepCNF-SS 10, 

PSIPRED4 11, MUFOLD-SS 12, SPIDER3 13, and SPIDER3-Single 41. 

2. Solvent Accessibility (SA) predicted by NetSurfP 14, SANN 15, ACCpro5ab initio 
16, 

AcconPred 17, SOLVPRED 11, SPIDER3 13, and SPIDER3-Single 41.  

3. Φ, Ψ, θ and τ angles predicted by SPIDER3 13 and SPIDER3-Single 41. 

4. Half-sphere Exposure (HSE) and Contact number (CN) predicted by AcconPred 17, 

SPIDER3 13, and SPIDER3-Single 41, and residue disorder by DISOPRED 42. 

5. Shannon entropy-based sequence conservation 43 and position-specific scoring matrix 

log-odds ratios calculated from an HHBLITS 34 alignment after Henikoff-Henikoff re-

weighting 44. 

6. Two global features are used to indicate the amount of sequence information. The Neff 

ratio calculated as the number of effective sequences in the alignment (γ) divided by the 

number of residues in the target sequence (δ), and the Neff score (1+(γ/δ)-0.5 )-1 45. These 

measure the number of sequences in the alignment relative to the protein size on an 

absolute and normalized scale and indicate the difficulty of a prediction given the 

amount of sequence information. 

For the predictions of TMT and ME, the input features of TopProperty include: 

1. TMH topology predictions from TMHMM 3, HMMTOP46, PHILIUS 47, PHOBIUS 48, 

POLYPHOBIUS 49, OCTOPUS 50, SPOCTOPUS 51, SCAMPI 52, TOPCONS 53, 

MEMSAT3 54, and PROTEUS 55. 

2. TMB topology predictions from BOCTOPUS 8, BETAWARE 9, and PROTEUS 55. 

3. Coiled-coil predictions from COILS2 56, helix orientation from LIPS 19, helix interaction 

predictions from RHYTHM 20, and four TMP potentials, three for TMHs 57-59 and one 

for TMBs 60. 

4. As for SS and RSA, position-specific scoring matrix log-odds ratios calculated from an 

HHBLITS 34 alignment after Henikoff-Henikoff re-weighting 44. 



As the OPM datasets contain close homologs to all TMPs, structure-based predictions from 

TOPCONS and PROTEUS were removed, since a structural match is always available and 

artificially inflates the performance of these predictors. For the same reason, the ab initio 

versions of SSpro5 and ACCpro5 were used for all datasets. The total number of input features 

are 123 for the SS/RSA DNNs and 129 for the TMT/ME DNNs, respectively. 

Target Scores. The goal for TopProperty is to predict SS, RSA, TMT, and ME. For SS and 

RSA, the true values were calculated with DSSP 61, using the three-class classification α-helix, 

β-strand, and coil for SS. For TMT and ME labels, the true label for globular proteins cannot 

be obtained from databases like OPM (since these proteins do not appear in the OPM database). 

Thus, the prediction of these labels is trained on the entries of the OPM database for which such 

labels can be calculated. For TMT and ME, the true labels were calculated as follows: 

TMT was defined as a three-class label for each residue: Inside the cytoplasm (label I), 

in the membrane slab (label M), or outside the cytoplasm (label O). The true labels are based 

solely on the position of the residue’s Cα atom relative to the membrane slab according to OPM-

defined protein orientation and membrane thickness and are independent of their SS class.  

ME is defined as a binary class, where a residue is exposed to the membrane or not. 

Calculating the true label is more intricate since TMPs often function as pores or channels, and 

therefore simply using RSA does not suffice; residues inside the pore are accessible to the 

solvent but not the membrane. ME is thus determined for each TM residue segment, based on 

three variables: The SS and RSA of the residue determined by DSSP, and the angle between 

the Cα-Cβ vector and the vector from the center of mass of the residues in the membrane to the 

Cα atom (denoted as the membrane angle). SS is used to distinguish TMHs from TMBs, RSA 

is used to determine surface residues, and the membrane angle is used to distinguish residues 

pointing to the inside of a channel or pore from residues pointing to the outside. The following 

rules are used to determine the true ME label: 

1. Only residues with a TMT label M can be exposed. 

2. α-helical membrane residues are exposed if they have ≥ 40 % RSA (fully exposed 
17) or have ≥ 10 % RSA (partially exposed 17) and a membrane angle ≤ 100° and 

otherwise not. 

3. Non-α-helical membrane residues are exposed if they have ≥10 % RSA and a 

membrane angle ≤ 100° and otherwise not. If the β-strand content of a TM segment 

is > 40%, the membrane exposure pattern is forced to fit an alternating sequence of 

exposed and not-exposed residues, matching the alternating ME pattern of TMBs 8. 



4. If a TM segment is one residue long or does not have >40 % α-helix or > 40 % β-

strand residues, all residues in the segment are assigned as exposed. 

Proteins with more than four TM β-sheet segments are classified as TMBs. Otherwise, if they 

have any TM α-helix segment, they are classified as TMHs. If neither of the above is true, they 

are classified as TM-other. An example of true TMT and ME labels is shown in Figure 2. 

 
Figure 2. True TMT and ME labels according to OPM. (A) A TM α-helix bundle (PDB ID: 2B2H_A). (B) A TM 

β-barrel (PDB ID: 1P4T_A). (C) A protein anchored in the membrane by two TM α-helices (PDB ID: 3RGB_A). 

Residues labeled outside are shown in blue, residues labeled inside are shown in orange. Membrane residues are 

shown in red if they are not exposed to the membrane and white with side-chains if they are membrane exposed. 

Two black horizontal lines are a visual aid to indicate the membrane slab. 

 

Quality Metrics. In all cases, the metrics were measured on a per-protein basis. For three-class 

SS prediction (α-helix, β-strand, coil), we use the Q3 score (fraction of correctly predicted 

labels) as well as the per-label and combined Matthews Correlation Coefficient (MCC) 62 as 

quality metrics. For RSA prediction, we use the Pearson’s Correlation Coefficient (Pearson’s 

R), as well as the Q3 score and MCCs for residue classification into buried (RSA ≤ 0.1), 

medium (0.1 < RSA ≤ 0.4), and exposed (RSA > 0.4) classes 17 as quality metrics. For TMT 

prediction, we use the Q3 score as well as the per-label and combined MCCs, while for ME 

prediction, we use the Q3 score as well as the binary MCC. In all per-label MCC calculations, 

if the predictions are equal to the true values, a value of 1 was assigned, irrespective of if the 

metric was poorly defined. In this way, predictions were considered as correctly classified 

where, for example, no β-strand or no buried residues are observed and also not predicted. 

Statistical significance of higher scores between TopProperty and other predictors was 

evaluated using the one-sided Wilcoxon signed-rank test as implemented in SciPy 63, using as 



an alternative hypothesis that the median TopProperty difference to the predictor with which it 

is compared is greater than 0. 

DNNs. The neural networks used in TopProperty are implemented in python using Keras 64 

with the TensorFlow 65 back-end and utilities from Sci-Kit-learn 66. A modified ResNetv2 

architecture 67 from the Keras-contrib Git-Hub repository 68 was used to compile the model, 

changing 2D convolution, averaging, and pooling layers for their 1D counterparts. Additionally, 

functions to fork the network after initial pooling and to converge the predictions into one main 

output were included, allowing to predict multiple outputs in the same network. The modified 

code can be downloaded along with the TopProperty datasets (http://dx.doi.org/10.25838/d5p-

20). To prevent overtraining, a 50% drop-out ratio 26 was set for every convolution layer, 

evaluating for early stopping on a 20% split of the data to monitor the loss. To handle class 

imbalance, we use class reweighting between the different SS classes (α-helix, β-sheet, and 

coil) and TMT classes (inside, membrane, outside). Convergence of the training was enforced 

by a learning rate reduction on plateaus of 5 epochs, starting from 0.01 and reducing it in steps 

of √0.1 to a minimum of 1x10-5 for SS/SA and 1x10-7 for TMT/ME. For both networks, batches 

of 500 samples were fed, until all data was seen during an epoch.  

The primary features are shaped as sliding window images with 123 feature channels 

for SS/RSA and 129 feature channels for TMT/ME DNNs and differing window sizes, where 

the target residue is located in the center of the window. As the predictions are made per residue, 

and to favor generalization across multiple proteins, each batch contained randomly ordered 

images from different proteins in the corresponding training set. For each window size, initial 

kernel sizes between 1 and the window size were evaluated, selecting the top performer for the 

final model.  

The SS/RSA DNNs are an ensemble of four 1D DNN’s trained to predict three-class SS 

and RSA simultaneously, with a structure equivalent to a ResNet50 and ResNet18, respectively. 

For SS predictions, a categorical cross-entropy loss function with a final softmax layer was 

used, while for the RSA predictions, a mean square error loss function and a linear final layer 

were implemented as is standard for regression tasks. The RSA predictions were passed to the 

SS predictions, setting SS as the main prediction (see below and Figure S1). A stride of 3 was 

used, with sliding window sizes of 1, 7, 11, and 23 residues and initial kernel sizes of 1, 7, 3, 

and 19, respectively. These networks thus predict SS and RSA with different amounts of local 

and non-local sequence information. 

For the TMT/ME DNNs, an ensemble of five 1D DNNs were trained, predicting 3-class 

TMT and binary ME labels simultaneously. Both network forks are equivalent to ResNet50s, 



using categorical cross-entropy as the loss function and a softmax layer to generate the final 

predictions; the ME predictions were passed to the TMT dense layer, setting TMT as the main 

prediction (Figure S1). These networks are similar to the SS/RSA networks except they use a 

stride of 1 and sliding window sizes of 5, 9, 11, 17, and 23 residues with initial kernel sizes of 

1, 1, 3, 1, and 23, respectively. 

The output of each of the different DNNs in a given ensemble is combined into a single 

score for each residue using a weighted average according to the performance of each of the 

different DNNs across the training dataset (MCC values for classification networks, Pearson’s 

R2 for RSA predictions).  

Results 

To evaluate TopProperty performance for SS and RSA predictions, we compared TopProperty 

to the four best primary predictors on the NOUMENON test set and the OPM test set, 

respectively. The best SS primary predictors according to Q3 score were MuFold 12, SPIDER3 
13, PSIPRED4 69, and DeepCNF-SS 10. The best RSA primary predictors according to Pearson’s 

R were SPIDER3 13, SANN 70, SOLVPRED 69, and NetSurfP 71. The same predictors but with 

different relative performances were identified for the OPM test set. On the OPM test set, we 

also compared TopProperty RSA predictions to TMP-SSurface-2 72, a recently published 

method specifically trained on TMPs. Although TopProperty was not trained specifically on 

TMPs, it performed equivalent or better compared to TMP-SSurface-2. The performance in 

terms of Q3 scores and MCCs for the three SS classes are shown in Figure 3A and 3B for the 

NOUMENON test set and OPM test set, respectively. The RSA performance in terms of 

Pearson’s R, as well as Q3 and MCCs for the three RSA classes, are shown in Figure 3C and 

3D, respectively. Comparisons to all primary predictors can be found in Figures S2 and S3. 



 
Figure 3. Performance of TopProperty SS and the four top-performing SS three-class primary predictors on the 

NOUMENON test set (A) and the OPM test set (B), sorted according to the average Q3 score. Performance of 

TopProperty RSA and the four top-performing RSA primary predictors on the NOUMENON test set (C) and the 

OPM test set (D), sorted according to the average Pearson’s R. Significantly higher TopProperty scores are 

calculated using the Wilcoxon signed-rank test and indicated with asterisks (*: p ≤ 0.05, **: p ≤ 0.01, 

***: p ≤ 0.001). For numerical values see Table S2. 

 

Overall, TopProperty performs significantly better than all predictors in Q3 and MCC for SS 

and R for RSA, on both the NOUMENON and the OPM test sets. This result is also observed 

for per-label metrics, with the notable exception of MUFold predictions of -strands on the 

NOUMENON data set, where no significant difference was identified, and SPIDER3 Q3 

classification for per-residue buriedness. Regarding the latter, neither method was directly 

trained to classify buriedness, but to predict RSA directly, making the Pearson’s R metric a 

more appropriate representation of the underlying model.  

It is interesting to note that the SS prediction on the NOUMENON and OPM test sets is 

comparable between all predictors except for β-strands, where it has much higher variance in 

the predictions for TMPs. This is caused by the large TMH/TMB imbalance in the OPM 

datasets, where TMHs (which often have no β-strands) make up 90% of the proteins, but TMBs 

(which often have exclusively β-strands) make up 10%. For the RSA predictions, the 

performance on the OPM dataset is considerably worse than on the NOUMENON dataset. This 

is likely because for TMPs, solvent accessibility is more difficult to predict due to the exposure 

of hydrophobic residues on the surface, where they are oriented towards the membrane. 

To evaluate TopProperty performance for TMT and ME predictions, we compared 

TopProperty to the best primary predictors for TMHs (Figure 4A) and to the TMB-specific 



predictors (Figure 4B), as well as to the popular meta-server CCTOP on the OPM test set. 

Comparisons to all primary predictors can be found in Figure S4. The best TMT primary 

predictors for TMHs according to Q3 score were SPOCTOPUS, OCTOPUS, and PolyPhobius. 

BOCTOPUS was better than BetAware as TMT primary predictor for TMBs according to Q3 

score. Similarly as for SS, the TMT performance is evaluated in terms of Q3 scores and MCCs 

for the three TMT classes. TopProperty shows a better performance in Q3 and MCC on TMT 

classification for both TMHs and TMBs of the OPM test set. This is a notable result, as TMT 

predictors are in general specific to a certain TMP class (either TMH or TMB). Although 

CCTop is the second-best method for TMHs and shows comparable performance to 

TopProperty for the inside class, it is only on the fourth rank for TMBs with significantly lower 

scores. BOCTOPUS and BetAware, on the other hand, provide good predictions for TMBs, but 

not for TMHs (see Figure S4). 

For ME predictions, only BOCTOPUS provides a classification of residues exposed to 

the membrane, and only for TMBs. Thus, we calculated ME performance for TMHs without 

any reference, and for TMBs, we compared TopProperty to BOCTOPUS (Figure 4C and 4D). 

Of the tested methods, TopProperty is the only one that performs well for either TM class.  

 
Figure 4. TopProperty TMT prediction performance for TMHs (A) and TMBs (B) and ME prediction performance 

for TMHs (C) and TMBs (D) on the OPM test set. Significantly higher TopProperty scores are calculated using 

the Wilcoxon signed-rank test and indicated with asterisks (*: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001). For 

numerical values see Table S3. 

 

The TopProperty web server provides an easy way for users to get SS, RSA, TMT, and ME 

predictions for their protein of interest. It accepts input sequences between 30 and 1000 residues 

in length and provides the predictions in an easy-to-read alignment format and download file. 

TopProperty is implemented as part of the TopSuite server 73, which also has methods for 

domain boundary prediction 28, protein structure prediction, 74 and protein model quality 

estimation 74. Figure 5 illustrates the TopProperty predictions displayed on the native structure 

with a subset of the output from the TopProperty web server and the true values shown for 



comparison. Experimental 3D structures are shown for clarity but do not reflect the output of 

the web server, since TopProperty does not perform protein folding. 

 

 
Figure 5. (A, B, C) Examples of TopProperty predictions. The native structure (top and bottom row) is colored 

by TopProperty-predicted (top row) or true (bottom row) properties. The color-coding on the structures is indicated 

in (E). The two black lines are visual aids indicating the membrane slab. A subset of the TopProperty web server 

output for each protein is shown in the middle row indicating the predicted properties and confidences. The web 

server output is color-coded according to the predicted properties as indicated in (D); numbers indicate the 

confidence of the prediction or the scale of the predicted property. RME is the relative membrane exposure and 

reflects the exposure probability scaled from 0 to 9. (A) PDB ID 2B2H_A (the last letter denotes the chain) is a 

TM α-helix bundle from the OPM test set. (B) PDB ID 1P4T_A is a TM β-barrel from the OPM test set. (C) PDB 

ID 3RGB_A from the OPM test set is anchored in the membrane by two TM α-helices. 



Conclusion 

We developed TopProperty, a meta-method for predicting three-class SS, RSA, TMT, and ME. 

The results are based on 27 primary predictors whose predictions are integrated using two 

ensembles of DNNs. TopProperty was trained on unbiased training dataset containing more 

than 4167 proteins and showed consistent improvement across all target values and quality 

metrics. Unlike similar methods such as CCTOP, TopProperty performance is independent of 

the type of input protein and works for both TMHs and TMBs. Furthermore, TopProperty 

provides consistently better SS and RSA predictions for both globular and transmembrane 

proteins and is a novel DNN method for predicting ME. 

Other methods have been described for predicting directly or indirectly the membrane 

exposure of TMP residues, such as LIPS 19, RHYTHM 20, TMX 75, and more recently TMP-

SSurface2 72 and LCP 76. From these predictors, LIPS and RHYTHM provide information 

regarding exposure per α-helix face, obscuring the per-residue signal, and lack information for 

TMBs; TMX is not available anymore. LCP is described in a preprint as a novel method that 

predicts the probability of interacting with lipids in a membrane environment, but is not 

available for testing. Lastly, TMP-SSurface2 predicts the RSA for residues placed in a 

membrane environment rather than a direct exposure classification. Interestingly, the Pearson’s 

R in the same range as for our independent OPM test set (Figure 2D) was reported 72.  

The recent release of AlphaFold 77 has fundamentally changed protein structure 

prediction as a field of research. While some evidence suggests that AlphaFold performs well 

on membrane proteins 78, the method still has limitations for proteins that are particularly big 

or have an oligomeric assembly. AlphaFold also does not provide information regarding the 

placement of a protein within the membrane bilayer. We expect that TopProperty predictions 

will be particularly useful in conjunction with methods such as AlphaFold to interpret and 

understand structure predictions of transmembrane proteins. For such targets, TopProperty can 

give insights into the orientation of the protein in the membrane and provide restraints for model 

refinement, e.g., within Rosetta 79. 

The ability to predict multiple linear features with a single tool makes TopProperty a 

useful first step to describe and understand uncharacterized TMPs and globular proteins. 

TopProperty is available as a standalone and web server at https://cpclab.uni-

duesseldorf.de/topsuite/, as are the datasets and DNN models (http://dx.doi.org/10.25838/d5p-

20). The total run-time of a TopProperty job varies depending on the size of the protein in 

question and the load of the server, but generally, the user will receive a prediction within a few 

hours. 
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