Home > Publications database > Substrate Access Mechanism in a Novel Membrane-Bound Phospholipase A of Pseudomonas aeruginosa Concordant with Specificity and Regioselectivity > print |
001 | 902474 | ||
005 | 20240715202022.0 | ||
024 | 7 | _ | |a 10.1021/acs.jcim.1c00973 |2 doi |
024 | 7 | _ | |a 0095-2338 |2 ISSN |
024 | 7 | _ | |a 1549-9596 |2 ISSN |
024 | 7 | _ | |a 1520-5142 |2 ISSN |
024 | 7 | _ | |a (BIS |2 ISSN |
024 | 7 | _ | |a 44.2004) |2 ISSN |
024 | 7 | _ | |a 1549-960X |2 ISSN |
024 | 7 | _ | |a 2128/29086 |2 Handle |
024 | 7 | _ | |a altmetric:116476296 |2 altmetric |
024 | 7 | _ | |a pmid:34748335 |2 pmid |
024 | 7 | _ | |a WOS:000757001900030 |2 WOS |
037 | _ | _ | |a FZJ-2021-04293 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Ahmad, Sabahuddin |0 P:(DE-Juel1)190226 |b 0 |
245 | _ | _ | |a Substrate Access Mechanism in a Novel Membrane-Bound Phospholipase A of Pseudomonas aeruginosa Concordant with Specificity and Regioselectivity |
260 | _ | _ | |a Washington, DC |c 2021 |b American Chemical Society |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1721025760_11492 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a PlaF is a cytoplasmic membrane-bound phospholipase A1 from Pseudomonas aeruginosa that alters the membrane glycerophospholipid (GPL) composition and fosters the virulence of this human pathogen. PlaF activity is regulated by a dimer-to-monomer transition followed by tilting of the monomer in the membrane. However, how substrates reach the active site and how the characteristics of the active site tunnels determine the activity, specificity, and regioselectivity of PlaF for natural GPL substrates have remained elusive. Here, we combined unbiased and biased all-atom molecular dynamics (MD) simulations and configurational free-energy computations to identify access pathways of GPL substrates to the catalytic center of PlaF. Our results map out a distinct tunnel through which substrates access the catalytic center. PlaF variants with bulky tryptophan residues in this tunnel revealed decreased catalysis rates due to tunnel blockage. The MD simulations suggest that GPLs preferably enter the active site with the sn-1 acyl chain first, which agrees with the experimentally demonstrated PLA1 activity of PlaF. We propose that the acyl chain-length specificity of PlaF is determined by the structural features of the access tunnel, which results in favorable free energy of binding of medium-chain GPLs. The suggested egress route conveys fatty acid (FA) products to the dimerization interface and, thus, contributes to understanding the product feedback regulation of PlaF by FA-triggered dimerization. These findings open up opportunities for developing potential PlaF inhibitors, which may act as antibiotics against P. aeruginosa. |
536 | _ | _ | |a 2171 - Biological and environmental resources for sustainable use (POF4-217) |0 G:(DE-HGF)POF4-2171 |c POF4-217 |f POF IV |x 0 |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 1 |
536 | _ | _ | |a Forschergruppe Gohlke (hkf7_20200501) |0 G:(DE-Juel1)hkf7_20200501 |c hkf7_20200501 |f Forschergruppe Gohlke |x 2 |
536 | _ | _ | |a DFG project 267205415 - SFB 1208: Identität und Dynamik von Membransystemen - von Molekülen bis zu zellulären Funktionen (267205415) |0 G:(GEPRIS)267205415 |c 267205415 |x 3 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Strunk, Christoph Heinrich |0 P:(DE-Juel1)169449 |b 1 |
700 | 1 | _ | |a Schott, Stephan |0 P:(DE-Juel1)187014 |b 2 |u fzj |
700 | 1 | _ | |a Jaeger, Karl-Erich |0 P:(DE-Juel1)131457 |b 3 |
700 | 1 | _ | |a Kovacic, Filip |0 P:(DE-Juel1)131480 |b 4 |e Corresponding author |
700 | 1 | _ | |a Gohlke, Holger |0 P:(DE-Juel1)172663 |b 5 |e Corresponding author |
773 | _ | _ | |a 10.1021/acs.jcim.1c00973 |g p. acs.jcim.1c00973 |0 PERI:(DE-600)1491237-5 |n 11 |p 5626–5643 |t Journal of chemical information and modeling |v 61 |y 2021 |x 0095-2338 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/902474/files/PlaF_activity_rev_final.pdf |y Published on 2021-11-08. Available in OpenAccess from 2022-11-08. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/902474/files/acs.jcim.1c00973.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:902474 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)190226 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)187014 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)131457 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)131480 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)172663 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2171 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 1 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-05-04 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-05-04 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-05-04 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-05-04 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CHEM INF MODEL : 2019 |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-05-04 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-05-04 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-05-04 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-4-20200403 |k IBG-4 |l Bioinformatik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)NIC-20090406 |k NIC |l John von Neumann - Institut für Computing |x 2 |
920 | 1 | _ | |0 I:(DE-Juel1)IBI-7-20200312 |k IBI-7 |l Strukturbiochemie |x 3 |
920 | 1 | _ | |0 I:(DE-Juel1)IMET-20090612 |k IMET |l Institut für Molekulare Enzymtechnologie (HHUD) |x 4 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IBG-4-20200403 |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a I:(DE-Juel1)NIC-20090406 |
980 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
980 | _ | _ | |a I:(DE-Juel1)IMET-20090612 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|