000902513 001__ 902513
000902513 005__ 20240712084523.0
000902513 0247_ $$2doi$$a10.1002/solr.202100720
000902513 0247_ $$2Handle$$a2128/32048
000902513 0247_ $$2WOS$$aWOS:000719153200001
000902513 037__ $$aFZJ-2021-04322
000902513 082__ $$a600
000902513 1001_ $$0P:(DE-Juel1)130252$$aHüpkes, Jürgen$$b0
000902513 245__ $$aDielectric Junction: Electrostatic Design for Charge Carrier Collection in Solar Cells
000902513 260__ $$aWeinheim$$bWiley-VCH$$c2022
000902513 3367_ $$2DRIVER$$aarticle
000902513 3367_ $$2DataCite$$aOutput Types/Journal article
000902513 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666072020_30577
000902513 3367_ $$2BibTeX$$aARTICLE
000902513 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902513 3367_ $$00$$2EndNote$$aJournal Article
000902513 520__ $$aConventional solar cells typically use doping of the involved semiconducting layers and work function differences between highly conductive contacts for the electrostatic design and the charge selectivity of the junction. In some halide perovskite solar cells, however, substantial variations in the permittivity of different organic and inorganic semiconducting layers strongly affect the electrostatic potential and thereby indirectly also the carrier concentrations, recombination rates, and eventually efficiencies of the device. Here, numerical simulations are used to study the implications of electrostatics on device performance for classical p−n junctions and p−i−n junctions, and for device geometries as observed in perovskite photovoltaics, where high-permittivity absorber layers are surrounded by low-permittivity and often also low-conductivity charge transport layers. The key principle of device design in materials with sufficiently high mobilities that are still dominated by defect-assisted recombination is the minimization of volume with similar densities of electrons and holes. In classical solar cells this is achieved by doping. For perovskites, the concept of a dielectric junction is proposed by the selection of charge transport layers with adapted permittivity if doping is not sufficient.
000902513 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000902513 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902513 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b1
000902513 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b2$$eCorresponding author
000902513 773__ $$0PERI:(DE-600)2882014-9$$a10.1002/solr.202100720$$gp. 2100720 -$$n1$$p2100720 -$$tSolar RRL$$v6$$x2367-198X$$y2022
000902513 8564_ $$uhttps://juser.fz-juelich.de/record/902513/files/Solar%20RRL%20-%202021%20-%20H%20pkes%20-%20Dielectric%20Junction%20Electrostatic%20Design%20for%20Charge%20Carrier%20Collection%20in%20Solar%20Cells.pdf$$yOpenAccess
000902513 8767_ $$d2022-11-15$$eHybrid-OA$$jDEAL
000902513 909CO $$ooai:juser.fz-juelich.de:902513$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000902513 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130252$$aForschungszentrum Jülich$$b0$$kFZJ
000902513 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich$$b1$$kFZJ
000902513 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b2$$kFZJ
000902513 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000902513 9141_ $$y2022
000902513 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902513 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-29$$wger
000902513 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000902513 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902513 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000902513 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOL RRL : 2021$$d2022-11-16
000902513 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-16
000902513 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-16
000902513 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-16
000902513 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-16
000902513 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-16
000902513 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-16
000902513 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSOL RRL : 2021$$d2022-11-16
000902513 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000902513 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000902513 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000902513 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000902513 920__ $$lyes
000902513 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000902513 9801_ $$aAPC
000902513 9801_ $$aFullTexts
000902513 980__ $$ajournal
000902513 980__ $$aVDB
000902513 980__ $$aUNRESTRICTED
000902513 980__ $$aI:(DE-Juel1)IEK-5-20101013
000902513 980__ $$aAPC
000902513 981__ $$aI:(DE-Juel1)IMD-3-20101013