000902514 001__ 902514 000902514 005__ 20250129094323.0 000902514 0247_ $$2doi$$a10.1107/S1600576721010128 000902514 0247_ $$2ISSN$$a0021-8898 000902514 0247_ $$2ISSN$$a1600-5767 000902514 0247_ $$2Handle$$a2128/29187 000902514 0247_ $$2altmetric$$aaltmetric:117042403 000902514 0247_ $$2pmid$$a34963764 000902514 0247_ $$2WOS$$aWOS:000727770700018 000902514 037__ $$aFZJ-2021-04323 000902514 082__ $$a540 000902514 1001_ $$0P:(DE-Juel1)176191$$aKöhler, Tobias$$b0$$ufzj 000902514 245__ $$aSignature of antiphase boundaries in iron oxide nanoparticles 000902514 260__ $$a[S.l.]$$bWiley-Blackwell$$c2021 000902514 3367_ $$2DRIVER$$aarticle 000902514 3367_ $$2DataCite$$aOutput Types/Journal article 000902514 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645439751_27838 000902514 3367_ $$2BibTeX$$aARTICLE 000902514 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000902514 3367_ $$00$$2EndNote$$aJournal Article 000902514 520__ $$aIron oxide nanoparticles find a wide variety of applications, including targeted drug delivery and hyperthermia in advanced cancer treatment methods. An important property of these particles is their maximum net magnetization, which has been repeatedly reported to be drastically lower than the bulk reference value. Previous studies have shown that planar lattice defects known as antiphase boundaries (APBs) have an important influence on the particle magnetization. The influence of APBs on the atomic spin structure of nanoparticles with the γ-Fe2O3 composition is examined via Monte Carlo simulations, explicitly considering dipole–dipole interactions between the magnetic moments that have previously only been approximated. For a single APB passing through the particle centre, a reduction in the magnetization of 3.9% (for 9 nm particles) to 7.9% (for 5 nm particles) is found in saturation fields of 1.5 T compared with a particle without this defect. Additionally, on the basis of Debye scattering equation simulations, the influence of APBs on X-ray powder diffraction patterns is shown. The Fourier transform of the APB peak profile is developed to be used in a whole powder pattern modelling approach to determine the presence of APBs and quantify them by fits to powder diffraction patterns. This is demonstrated on experimental data, where it could be shown that the number of APBs is related to the observed reduction in magnetization. 000902514 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0 000902514 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1 000902514 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000902514 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0 000902514 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x1 000902514 65027 $$0V:(DE-MLZ)SciArea-190$$2V:(DE-HGF)$$aMedicine$$x2 000902514 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0 000902514 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0 000902514 7001_ $$0P:(DE-Juel1)144382$$aFeoktystov, Artem$$b1 000902514 7001_ $$0P:(DE-Juel1)145895$$aPetracic, Oleg$$b2 000902514 7001_ $$0P:(DE-Juel1)176627$$aNandakumaran, Nileena$$b3$$ufzj 000902514 7001_ $$00000-0002-9086-2717$$aCervellino, Antonio$$b4 000902514 7001_ $$0P:(DE-Juel1)130572$$aBrückel, Thomas$$b5 000902514 773__ $$0PERI:(DE-600)2020879-0$$a10.1107/S1600576721010128$$gVol. 54, no. 6$$n6$$p1 -11$$tJournal of applied crystallography$$v54$$x0021-8898$$y2021 000902514 8564_ $$uhttps://juser.fz-juelich.de/record/902514/files/kc5133-1.pdf$$yOpenAccess 000902514 8767_ $$d2021-09-28$$eHybrid-OA$$jDeposit 000902514 909CO $$ooai:juser.fz-juelich.de:902514$$pdnbdelivery$$popenCost$$pVDB$$pVDB:MLZ$$pdriver$$pOpenAPC$$popen_access$$popenaire 000902514 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176191$$aForschungszentrum Jülich$$b0$$kFZJ 000902514 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144382$$aForschungszentrum Jülich$$b1$$kFZJ 000902514 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145895$$aForschungszentrum Jülich$$b2$$kFZJ 000902514 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176627$$aForschungszentrum Jülich$$b3$$kFZJ 000902514 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich$$b5$$kFZJ 000902514 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0 000902514 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1 000902514 9141_ $$y2021 000902514 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29 000902514 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29 000902514 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000902514 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29 000902514 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL CRYSTALLOGR : 2019$$d2021-01-29 000902514 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-29$$wger 000902514 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29 000902514 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29 000902514 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29 000902514 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000902514 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29 000902514 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29 000902514 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29 000902514 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-29 000902514 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger 000902514 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29 000902514 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 000902514 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019 000902514 920__ $$lyes 000902514 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0 000902514 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1 000902514 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2 000902514 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x3 000902514 9801_ $$aFullTexts 000902514 980__ $$ajournal 000902514 980__ $$aVDB 000902514 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218 000902514 980__ $$aI:(DE-Juel1)PGI-4-20110106 000902514 980__ $$aI:(DE-82)080009_20140620 000902514 980__ $$aI:(DE-Juel1)JCNS-2-20110106 000902514 980__ $$aUNRESTRICTED 000902514 980__ $$aAPC 000902514 981__ $$aI:(DE-Juel1)JCNS-2-20110106