000902524 001__ 902524
000902524 005__ 20211130111100.0
000902524 0247_ $$2doi$$a10.1002/hbm.25619
000902524 0247_ $$2ISSN$$a1065-9471
000902524 0247_ $$2ISSN$$a1097-0193
000902524 0247_ $$2Handle$$a2128/29039
000902524 0247_ $$2altmetric$$aaltmetric:111776647
000902524 0247_ $$2pmid$$apmid:34387388
000902524 0247_ $$2WOS$$aWOS:000684567000001
000902524 037__ $$aFZJ-2021-04333
000902524 082__ $$a610
000902524 1001_ $$0P:(DE-Juel1)165785$$aNettekoven, Charlotte$$b0
000902524 245__ $$aImproving the efficacy and reliability of rTMS language mapping by increasing the stimulation frequency
000902524 260__ $$aNew York, NY$$bWiley-Liss$$c2021
000902524 3367_ $$2DRIVER$$aarticle
000902524 3367_ $$2DataCite$$aOutput Types/Journal article
000902524 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637150115_27541
000902524 3367_ $$2BibTeX$$aARTICLE
000902524 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902524 3367_ $$00$$2EndNote$$aJournal Article
000902524 520__ $$aRepetitive TMS (rTMS) with a frequency of 5–10 Hz is widely used for language mapping. However, it may be accompanied by discomfort and is limited in the number and reliability of evoked language errors. We, here, systematically tested the influence of different stimulation frequencies (i.e., 10, 30, and 50 Hz) on tolerability, number, reliability, and cortical distribution of language errors aiming at improved language mapping. 15 right-handed, healthy subjects (m = 8, median age: 29 yrs) were investigated in two sessions, separated by 2–5 days. In each session, 10, 30, and 50 Hz rTMS were applied over the left hemisphere in a randomized order during a picture naming task. Overall, 30 Hz rTMS evoked significantly more errors (20 ± 12%) compared to 50 Hz (12 ± 8%; p <.01), whereas error rates were comparable between 30/50 and 10 Hz (18 ± 11%). Across all conditions, a significantly higher error rate was found in Session 1 (19 ± 13%) compared to Session 2 (13 ± 7%, p <.05). The error rate was poorly reliable between sessions for 10 (intraclass correlation coefficient, ICC = .315) and 30 Hz (ICC = .427), whereas 50 Hz showed a moderate reliability (ICC = .597). Spatial reliability of language errors was low to moderate with a tendency toward increased reliability for higher frequencies, for example, within frontal regions. Compared to 10 Hz, both, 30 and 50 Hz were rated as less painful. Taken together, our data favor the use of rTMS-protocols employing higher frequencies for evoking language errors reliably and with reduced discomfort, depending on the region of interest.
000902524 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000902524 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902524 7001_ $$0P:(DE-HGF)0$$aPieczewski, Julia$$b1
000902524 7001_ $$0P:(DE-HGF)0$$aNeuschmelting, Volker$$b2
000902524 7001_ $$0P:(DE-HGF)0$$aJonas, Kristina$$b3
000902524 7001_ $$0P:(DE-HGF)0$$aGoldbrunner, Roland$$b4
000902524 7001_ $$0P:(DE-Juel1)161406$$aGrefkes, Christian$$b5
000902524 7001_ $$0P:(DE-HGF)0$$aWeiss Lucas, Carolin$$b6$$eCorresponding author
000902524 773__ $$0PERI:(DE-600)1492703-2$$a10.1002/hbm.25619$$gVol. 42, no. 16, p. 5309 - 5321$$n16$$p5309 - 5321$$tHuman brain mapping$$v42$$x1065-9471$$y2021
000902524 8564_ $$uhttps://juser.fz-juelich.de/record/902524/files/Nettekoven_2021_HBM_language_mapping_rTMS_intensity....pdf$$yOpenAccess
000902524 909CO $$ooai:juser.fz-juelich.de:902524$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902524 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161406$$aForschungszentrum Jülich$$b5$$kFZJ
000902524 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000902524 9141_ $$y2021
000902524 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000902524 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000902524 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-27
000902524 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000902524 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000902524 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000902524 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHUM BRAIN MAPP : 2019$$d2021-01-27
000902524 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger
000902524 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-27
000902524 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000902524 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000902524 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000902524 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902524 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000902524 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000902524 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-27
000902524 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000902524 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000902524 920__ $$lyes
000902524 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000902524 980__ $$ajournal
000902524 980__ $$aVDB
000902524 980__ $$aUNRESTRICTED
000902524 980__ $$aI:(DE-Juel1)INM-3-20090406
000902524 9801_ $$aFullTexts