001     902525
005     20211130111103.0
024 7 _ |a 10.1002/hbm.25612
|2 doi
024 7 _ |a 1065-9471
|2 ISSN
024 7 _ |a 1097-0193
|2 ISSN
024 7 _ |a 2128/29040
|2 Handle
024 7 _ |a altmetric:113616992
|2 altmetric
024 7 _ |a pmid:34346531
|2 pmid
024 7 _ |a WOS:000680934200001
|2 WOS
037 _ _ |a FZJ-2021-04334
082 _ _ |a 610
100 1 _ |a Paul, Theresa
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Early motor network connectivity after stroke: An interplay of general reorganization and state‐specific compensation
260 _ _ |a New York, NY
|c 2021
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1637150203_452
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Motor recovery after stroke relies on functional reorganization of the motor network, which is commonly assessed via functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (rsFC) or task-related effective connectivity (trEC). Measures of either connectivity mode have been shown to successfully explain motor impairment post-stroke, posing the question whether motor impairment is more closely reflected by rsFC or trEC. Moreover, highly similar changes in ipsilesional and interhemispheric motor network connectivity have been reported for both rsFC and trEC after stroke, suggesting that altered rsFC and trEC may capture similar aspects of information integration in the motor network reflecting principle, state-independent mechanisms of network reorganization rather than state-specific compensation strategies. To address this question, we conducted the first direct comparison of rsFC and trEC in a sample of early subacute stroke patients (n = 26, included on average 7.3 days post-stroke). We found that both rsFC and trEC explained motor impairment across patients, stressing the clinical potential of fMRI-based connectivity. Importantly, intrahemispheric connectivity between ipsilesional M1 and premotor areas depended on the activation state, whereas interhemispheric connectivity between homologs was state-independent. From a mechanistic perspective, our results may thus arise from two distinct aspects of motor network plasticity: task-specific compensation within the ipsilesional hemisphere and a more fundamental form of reorganization between hemispheres.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hensel, Lukas
|0 P:(DE-Juel1)142144
|b 1
700 1 _ |a Rehme, Anne K.
|0 P:(DE-Juel1)165784
|b 2
700 1 _ |a Tscherpel, Caroline
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 4
700 1 _ |a Fink, Gereon R.
|0 P:(DE-Juel1)131720
|b 5
700 1 _ |a Grefkes, Christian
|0 P:(DE-Juel1)161406
|b 6
700 1 _ |a Volz, Lukas J.
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1002/hbm.25612
|g Vol. 42, no. 16, p. 5230 - 5243
|0 PERI:(DE-600)1492703-2
|n 16
|p 5230 - 5243
|t Human brain mapping
|v 42
|y 2021
|x 1065-9471
856 4 _ |u https://juser.fz-juelich.de/record/902525/files/Paul_2021_Hum%20Brain%20Mapp_Early%20motor%20network....pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:902525
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)161406
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HUM BRAIN MAPP : 2019
|d 2021-01-27
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-01-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21