000902529 001__ 902529
000902529 005__ 20220110142646.0
000902529 037__ $$aFZJ-2021-04337
000902529 041__ $$aEnglish
000902529 1001_ $$0P:(DE-Juel1)142052$$aPütter, Sabine$$b0$$eCorresponding author$$ufzj
000902529 1112_ $$aAdvances in Magnetics 2020-21$$cMoena$$d2021-06-13 - 2021-06-16$$gAIM 2020-21$$wItaly
000902529 245__ $$aRevealing magnetic properties of thin films utilizing polarized neutrons
000902529 260__ $$c2021
000902529 3367_ $$033$$2EndNote$$aConference Paper
000902529 3367_ $$2BibTeX$$aINPROCEEDINGS
000902529 3367_ $$2DRIVER$$aconferenceObject
000902529 3367_ $$2ORCID$$aCONFERENCE_POSTER
000902529 3367_ $$2DataCite$$aOutput Types/Conference Poster
000902529 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1641817700_14748$$xAfter Call
000902529 520__ $$aPolarized neutron reflectometry (PNR) is a versatile probe for the study of the magnetic moment with depth resolution. As self-calibrating technique, it provides independently values of the magnetic moment, its direction in the film plane, and film thickness together with its scattering length density values. It is layer selective and buried layers in multilayer systems can be analyzed [1].In this contribution we will provide an overview of the possibilities of PNR as well as present the reflectometer MARIA [2]. It is a state of the art reflectometer at the constant neutron flux reactor in Garching, Germany. MARIA exhibits a high dynamic range of up to 7-8 orders of magnitude and a maximum Q (momentum transfer vector) higher than 0.25 Å$^{-1}$. With the combination of a 400 x 400 mm$^2$ position sensitive detector and a time-stable 3He polarization spin filter based on Spin-Exchange Optical Pumping (SEOP), the instrument is well equipped for investigating specular reflectivity and off-specular scattering from magnetic thin films and artificially fabricated structures like nano-dots, gratings, etc. down to the monolayer regime in full spin polarization. Furthermore, the GISANS option can be used to investigate lateral correlations in the nm range. Due to the large detector and pinhole collimation of the incident neutron beam even grazing incidence diffraction measurements are possible. All the options, like GISANS, neutron polarization and 3He polarization spin filter can be moved in and out of the neutron beam within seconds by remote controlled push button operation and do not require any realignment.Magnetic fields can be applied up to 5 T and a low temperature sample environment (down to 3 K) is offered. Thin film samples may be fabricated in a MBE system nearby (deposition materials according to the requirements of the user). For investigation of samples which are sensitive to ambient conditions a UHV transport and measurement chamber with base pressure in 10−10 mbar range is provided (transfer forth and back) [3]. Typical substrate size for investigation is 10x10 mm$^2$.Examples for PNR investigation of thin films like e.g. NiO/Fe/L10-FePt, SrCoO$_x$, Co/W(110), Fe$_4$N/LaAlO$_3$(001) are discussed. However, the MARIA reflectometer and the MBE system are user instruments. Hence we offer measurement and sample preparation time to interested users [4]. Let’s discuss your ideas![1] J. A. C. Bland and C. A. F. Vaz, Chapter 7 in J. A. C. Bland and B. Heinrich, Eds., Ultrathin Magnetic Structures III, Springer-Verlag Berlin (2005)[2] Heinz Maier-Leibnitz Zentrum. (2015). J. large-scale research facilities, 1, A8. http://dx.doi.org/10.17815/jlsrf-1-29; S. Mattauch, A. Koutsioumpas, et al., J. appl. Crystallography, 51, 646 (2018)[3] A.Syed Mohd, S.Pütter, et al., Rev. Sci. Instrum. 87, 123909(2016)[4] www.mlz-garching.de/maria;www.mlz-garching.de/mbe
000902529 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000902529 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
000902529 536__ $$0G:(DE-HGF)2020_Join2-NFFA-Europe_funded$$aNFFA-Europe_supported - Technically supported by Nanoscience Foundries and Fine Analysis Europe (2020_Join2-NFFA-Europe_funded)$$c2020_Join2-NFFA-Europe_funded$$x2
000902529 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000902529 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000902529 693__ $$0EXP:(DE-MLZ)MARIA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)MARIA-20140101$$6EXP:(DE-MLZ)NL5N-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eMARIA: Magnetic reflectometer with high incident angle$$fNL5N$$x0
000902529 693__ $$0EXP:(DE-MLZ)MBE-MLZ-20151210$$5EXP:(DE-MLZ)MBE-MLZ-20151210$$eMBE-MLZ: Molecular Beam Epitaxy at MLZ$$x1
000902529 7001_ $$0P:(DE-Juel1)130821$$aMattauch, Stefan$$b1$$ufzj
000902529 7001_ $$0P:(DE-Juel1)158075$$aKoutsioumpas, Alexandros$$b2$$ufzj
000902529 7001_ $$0P:(DE-Juel1)169442$$aSchöffmann, Patrick$$b3$$ufzj
000902529 7001_ $$0P:(DE-Juel1)159309$$aSyed Mohd, Amir$$b4
000902529 7001_ $$0P:(DE-Juel1)177085$$aZhernenkov, Kirill$$b5$$ufzj
000902529 7001_ $$0P:(DE-Juel1)130516$$aBabcock, Earl$$b6$$ufzj
000902529 7001_ $$0P:(DE-Juel1)144963$$aSalhi, Zahir$$b7$$ufzj
000902529 7001_ $$0P:(DE-Juel1)130729$$aIoffe, Alexander$$b8$$ufzj
000902529 7001_ $$0P:(DE-Juel1)130572$$aBrückel, Thomas$$b9$$ufzj
000902529 909CO $$ooai:juser.fz-juelich.de:902529$$pVDB:MLZ$$pVDB
000902529 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142052$$aForschungszentrum Jülich$$b0$$kFZJ
000902529 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130821$$aForschungszentrum Jülich$$b1$$kFZJ
000902529 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158075$$aForschungszentrum Jülich$$b2$$kFZJ
000902529 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169442$$aForschungszentrum Jülich$$b3$$kFZJ
000902529 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177085$$aForschungszentrum Jülich$$b5$$kFZJ
000902529 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130516$$aForschungszentrum Jülich$$b6$$kFZJ
000902529 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144963$$aForschungszentrum Jülich$$b7$$kFZJ
000902529 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130729$$aForschungszentrum Jülich$$b8$$kFZJ
000902529 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich$$b9$$kFZJ
000902529 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000902529 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x1
000902529 9141_ $$y2021
000902529 920__ $$lyes
000902529 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x0
000902529 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000902529 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x2
000902529 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x3
000902529 980__ $$aposter
000902529 980__ $$aVDB
000902529 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000902529 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000902529 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000902529 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000902529 980__ $$aUNRESTRICTED