000902538 001__ 902538
000902538 005__ 20240712112832.0
000902538 0247_ $$2doi$$a10.1039/D1DT03237B
000902538 0247_ $$2ISSN$$a0300-9246
000902538 0247_ $$2ISSN$$a1364-5447
000902538 0247_ $$2ISSN$$a(2001)
000902538 0247_ $$2ISSN$$a1470-479X
000902538 0247_ $$2ISSN$$a1477-9226
000902538 0247_ $$2ISSN$$a1477-9234
000902538 0247_ $$2ISSN$$a2050-5671
000902538 0247_ $$2Handle$$a2128/29354
000902538 0247_ $$2altmetric$$aaltmetric:117120872
000902538 0247_ $$2pmid$$a34786581
000902538 0247_ $$2WOS$$aWOS:000719430800001
000902538 037__ $$aFZJ-2021-04340
000902538 041__ $$aEnglish
000902538 082__ $$a540
000902538 1001_ $$0P:(DE-Juel1)176900$$aMurphy, Gabriel L.$$b0$$eCorresponding author
000902538 245__ $$aIncorporation of iodine into uranium oxyhydroxide phases
000902538 260__ $$aLondon$$bSoc.$$c2021
000902538 3367_ $$2DRIVER$$aarticle
000902538 3367_ $$2DataCite$$aOutput Types/Journal article
000902538 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642755543_7161
000902538 3367_ $$2BibTeX$$aARTICLE
000902538 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902538 3367_ $$00$$2EndNote$$aJournal Article
000902538 520__ $$aHerein, we have synthesised a novel uranium oxyhydroxide (UOH) phase, Rb2K2[(UO2)6O4(OH)6]·(IO3)2, under hydrothermal conditions which intercalates IO3− via a hybrid salt-inclusion and host–guest mechanism. The mechanism is based on favorable intermolecular bonding between disordered Rb+/K+ and IO3− ions and hydroxyl and layer void positions respectively. To examine whether the intercalation may occur ubiquitously for UOH phases, the known UOH mineral phases metaschoepite ([(UO2)8O2(OH)12]·12H2O), compreignacite (K2[(UO2)6O4(OH)6]·7H2O) and also related β-UO2(OH)2 were synthesised and exposed to aqueous I− and IO3− for 1 month statically at RT and 60 °C in air and the solid analysed using laser ablation inductively coupled plasma mass spectroscopy. Measurements indicate intercalation can occur homogeneously, but the affinity is dependent upon the structure of the UOH phases and temperature, where higher temperatures and when the interlayer space is free of initial moieties are favoured. It was also found that after repeated washing of the UOH samples with DI water the intercalated iodine was retained. UOH phases are known to form during the oxidative corrosion of spent nuclear fuel during an accident scenario in the near field, this work suggests they may help retard the transport of radiolytic iodine into the environment during a long-term release event.
000902538 536__ $$0G:(DE-HGF)POF4-1411$$a1411 - Nuclear Waste Disposal (POF4-141)$$cPOF4-141$$fPOF IV$$x0
000902538 536__ $$0G:(DE-HGF)POF4-1412$$a1412 - Predisposal (POF4-141)$$cPOF4-141$$fPOF IV$$x1
000902538 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x2
000902538 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902538 7001_ $$0P:(DE-Juel1)159378$$aKegler, Philip$$b1$$ufzj
000902538 7001_ $$0P:(DE-Juel1)130364$$aKlinkenberg, Martina$$b2$$ufzj
000902538 7001_ $$0P:(DE-Juel1)130438$$aWilden, Andreas$$b3
000902538 7001_ $$0P:(DE-Juel1)176390$$aHenkes, Maximilian$$b4$$ufzj
000902538 7001_ $$0P:(DE-Juel1)164342$$aSchneider, Dimitri$$b5$$ufzj
000902538 7001_ $$0P:(DE-Juel1)144426$$aAlekseev, Evgeny V.$$b6$$eCorresponding author
000902538 773__ $$0PERI:(DE-600)1472887-4$$a10.1039/D1DT03237B$$gp. 10.1039.D1DT03237B$$n46$$p17257-17264$$tDalton transactions$$v50$$x0300-9246$$y2021
000902538 8564_ $$uhttps://juser.fz-juelich.de/record/902538/files/Crystal%20structure%20data.cif$$yRestricted
000902538 8564_ $$uhttps://juser.fz-juelich.de/record/902538/files/Supplementary%20Information.pdf$$yRestricted
000902538 8564_ $$uhttps://juser.fz-juelich.de/record/902538/files/d1dt03237b.pdf$$yOpenAccess
000902538 8767_ $$d2021-12-30$$eHybrid-OA$$jPublish and Read
000902538 909CO $$ooai:juser.fz-juelich.de:902538$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000902538 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176900$$aForschungszentrum Jülich$$b0$$kFZJ
000902538 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159378$$aForschungszentrum Jülich$$b1$$kFZJ
000902538 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130364$$aForschungszentrum Jülich$$b2$$kFZJ
000902538 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130438$$aForschungszentrum Jülich$$b3$$kFZJ
000902538 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176390$$aForschungszentrum Jülich$$b4$$kFZJ
000902538 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164342$$aForschungszentrum Jülich$$b5$$kFZJ
000902538 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144426$$aForschungszentrum Jülich$$b6$$kFZJ
000902538 9131_ $$0G:(DE-HGF)POF4-141$$1G:(DE-HGF)POF4-140$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1411$$aDE-HGF$$bForschungsbereich Energie$$lNukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)$$vNukleare Entsorgung$$x0
000902538 9131_ $$0G:(DE-HGF)POF4-141$$1G:(DE-HGF)POF4-140$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1412$$aDE-HGF$$bForschungsbereich Energie$$lNukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)$$vNukleare Entsorgung$$x1
000902538 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x2
000902538 9141_ $$y2021
000902538 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000902538 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000902538 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000902538 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902538 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bDALTON T : 2019$$d2021-01-27
000902538 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000902538 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000902538 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000902538 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000902538 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000902538 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2021-01-27$$wger
000902538 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000902538 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-01-27
000902538 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-27$$wger
000902538 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000902538 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000902538 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000902538 920__ $$lyes
000902538 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$kIEK-6$$lNukleare Entsorgung und Reaktorsicherheit$$x0
000902538 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x1
000902538 9801_ $$aFullTexts
000902538 980__ $$ajournal
000902538 980__ $$aVDB
000902538 980__ $$aI:(DE-Juel1)IEK-6-20101013
000902538 980__ $$aI:(DE-Juel1)IEK-9-20110218
000902538 980__ $$aUNRESTRICTED
000902538 980__ $$aAPC
000902538 981__ $$aI:(DE-Juel1)IFN-2-20101013
000902538 981__ $$aI:(DE-Juel1)IET-1-20110218
000902538 981__ $$aI:(DE-Juel1)IET-1-20110218