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History of GPUs
A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL
2020 Top 500: 25 with NVIDIA GPUs (#2, #3) [4], Green 500: 9 of top 10 with GPUs [5]
2021 : Leonardo (250 PFLOP s*, Italy), NVIDIA GPUs; LUMI (552 PFLOP s, Finland), AMD GPUs

: Frontier ( 1 5 EFLOP s, ORNL), AMD GPUs
Future : ???

: Aurora ( 1 EFLOP s, Argonne), Intel GPUs; El Capitan ( 2 EFLOP s, LLNL), AMD GPUs

*: Effective FLOP s, not theoretical peak
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Status Quo Across Architectures
Performance

10
2

10
3

10
4

 2008  2010  2012  2014  2016  2018  2020

HD 3
870

HD 4
870

HD 5
870

HD 6
970

HD 6
970

HD 7
970 G

Hz 
Ed.

HD 8
970

Fire
Pro

 W
9100

Fire
Pro

 S
9150

M
I2

5

MI60

X5482

X5492

W
5590

X5680

X5690

E5-2
690

E5-2
697 v

2

E5-2
699 v

3

E5-2
699 v

3

E5-2
699 v

4

Pla
tin

um
 8

180 Pla
tin

um
 9

282

Tesla
 C

1060

Tesla
 C

1060
Tesla

 C
2050 Tesla

 M
2090

Tesla
 K

20

Tesla
 K

20X

Tesla
 K

40

Tesla
 K

40

Tesla
 P

100 Tesla
 V

100
A100

Xeon Phi 7120 (KNC)

X
eo

n 
P
hi

 7
29

0 
(K

N
L)

G
F

L
O

P
/s

e
c

End of Year

Theoretical Peak Performance, Double Precision

INTEL Xeon CPUs

NVIDIA Tesla GPUs

AMD Radeon GPUs

INTEL Xeon Phis

Gr
ap

hi
c:
Ru

pp
[6
]

Member of the Helmholtz Association 27 October 2021 Slide 3 35



Status Quo Across Architectures
Memory Bandwidth
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JUWELS Cluster – Jülich’s Scalable System
2500 nodes with Intel Xeon CPUs (2× 24 cores)
46+ 10 nodes with 4 NVIDIA Tesla V100 cards (16 GB memory)
10.4 (CPU) + 1.6 (GPU) PFLOP/s peak performance (Top500: #65)
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JUWELS Booster – Scaling Higher!
936 nodes with AMD EPYC Rome CPUs (2× 24 cores)

Each with 4 NVIDIA A100 Ampere GPUs (each: FP64TC: 19.5
FP64: 9.7 TFLOP/s, 40 GB memory)

InfiniBand DragonFly+ HDR-200 network; 4× 200Gbit/s per node
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JUWELS Booster – Scaling Higher!
936 nodes with AMD EPYC Rome CPUs (2× 24 cores)

Each with 4 NVIDIA A100 Ampere GPUs (each: FP64TC: 19.5
FP64: 9.7 TFLOP/s, 40 GB memory)

InfiniBand DragonFly+ HDR-200 network; 4× 200Gbit/s per node

Top500 List Jun 2021:
#1 Europe
#8 World
#2* Green500
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JURECA DC – Multi-Purpose
768 nodes with AMD EPYC Rome CPUs (2× 64 cores)
192 nodes with 4 NVIDIA A100 Ampere GPUs
InfiniBand DragonFly+ HDR-100 network
Also: JURECA Booster: 1640 nodes with Intel Xeon Phi Knights Landing
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Getting GPU-Acquainted
Some Applications

Location of Code:
1-Basics/Tasks/01-Getting-Started

See Instructions.iypnb for hints.
Make sure to have sourced the course environment!

TASK
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Make sure to have sourced the course environment!

GEMM N-Body

Dot ProductMandelbrot

TASK

Member of the Helmholtz Association 27 October 2021 Slide 7 35



Getting GPU-Acquainted
Some Applications

0 2000 4000 6000 8000 10000 12000 14000 16000
Size of Square Matrix

0

1000

2000

3000

4000

GF
LO

P/
s

DGEMM Benchmark

CPU
GPU

GEMM

0 20000 40000 60000 80000 100000 120000
Number of Particles

0

5000

10000

15000

20000

GF
LO

P/
s

N-Body Benchmark

1 GPU SP
2 GPUs SP
4 GPUs SP
1 GPU DP
2 GPUs DP
4 GPUs DP N-Body

103 104 105 106 107 108 109

Vector Length

100

101

102

103

DDot Benchmark

Device
CPU
GPU

Dot Product

0 5000 10000 15000 20000 25000 30000
Width of Image

0

500

1000

1500

M
Pi

xe
l/

s

Mandelbrot Benchmark

CPU
GPU

Mandelbrot

TASK

Member of the Helmholtz Association 27 October 2021 Slide 7 35



Platform



CPU vs. GPU
Amatter of specialties

Transporting one
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Transporting many
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CPU vs. GPU
Chip

ALUALU

ALU ALU
Control

Cache

DRAM DRAM
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GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

High Throughput
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Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA
Memory transfers need special consideration!
Do as little as possible!
Choice: automatic transfers (convenience) or manual transfers (control)

V100
32GB RAM, 900 GB s

A100
40GB RAM, 1555 GB s
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Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory

, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory
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GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

High Throughput
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Async
Following different streams

Problem: Memory transfer is comparably slow
Solution: Do something else in meantime (computation)!

→ Overlap tasks

Copy and compute engines run separately (streams)
Copy Compute Copy Compute

Copy Compute Copy Compute

GPU needs to be fed: Schedule many computations
CPU can do other work while GPU computes; synchronization
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SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)

Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

CPU core GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

+

+

+

C0

C1

C2

C3

=

=

=

=

Scalar
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Branching if
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Low Latency vs. High Throughput
Maybe GPU’s ultimate feature

CPU Minimizes latency within each thread
GPU Hides latency with computations from other thread warps

CPU Core: Low Latency
T1 T2 T3 T4

GPU Streaming Multiprocessor: High Throughput
W1

W2

W3

W4 Waiting
Ready
Context Switch
Processing
Thread/Warp
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CPU vs. GPU
Let’s summarize this!

Optimized for low latency
+ Large main memory
+ Fast clock rate
+ Large caches
+ Branch prediction
+ Powerful ALU
− Relatively lowmemory bandwidth
− Cachemisses costly
− Low performance per watt

Optimized for high throughput
+ High bandwidth main memory
+ Latency tolerant (parallelism)
+ More compute resources
+ High performance per watt
− Limited memory capacity
− Low per-thread performance
− Extension card
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Programming GPUs



Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration
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Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[1
0]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math
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! Parallelism

Libraries are not enough?

You think you want to write your own GPU code?
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Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for
N parallel processors
Total Time t = tserial + tparallel

N Processors t N ts tp N

Speedup s N t t N ts tp
ts tp N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0

20

40

60

80

100

Sp
ee

du
p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%
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! Parallelism

Parallel programming is not easy!

Things to consider:
Is my application computationally intensive enough?
What are the levels of parallelism?
Howmuch data needs to be transferred?
Is the gainworth the pain?
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Alternatives
The twilight

There are alternatives to CUDA C, which can ease the pain…
OpenACC, OpenMP
Thrust
Kokkos, RAJA, ALPAKA, SYCL, DPC++, pSTL
PyCUDA, Cupy, Numba

Other alternatives
CUDA Fortran
HIP
OpenCL
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Programming GPUs
CUDA C/C++



Preface: CPU
A simple CPU program!

SAXPY: y⃗ = a⃗x+ y⃗, with single precision
Part of LAPACK BLAS Level 1
void saxpy(int n, float a, float * x, float * y) {

for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy(n, a, x, y);
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CUDA SAXPY
With runtime-managed data transfers

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();
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CUDA SAXPY
With runtime-managed data transfers

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Specify kernel

ID variables

Guard against
too many threads

Allocate GPU-capable
memory

Call kernel
2 blocks, each 5 threads

Wait for
kernel to finish
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CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads

Block

Blocks

Grid

Threads & blocks in 3D3D3D3D

Execution entity: threads
Lightweight fast switchting!
1000s threads execute simultaneously order non-deterministic!

OpenACC takes care of threads and blocks for you!
Block configuration is just an optimization!
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Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Execution entity: threads
Lightweight→ fast switchting!
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Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
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Acceleration
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Conclusions



Conclusions

GPUs achieve performance by specialized hardware→ threads
Faster time-to-solution
Lower energy-to-solution

GPU acceleration can be done by different means
Libraries are the easiest, CUDA the fullest
OpenACC good compromise
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Thank you

for your att
ention!

a.herten@fz-juelich.de
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Glossary I
AMD Manufacturer of CPUs and GPUs. 3, 4, 5, 6, 7, 8, 9

Ampere GPU architecture from NVIDIA (announced 2019). 13, 14, 15
API A programmatic interface to software by well-defined functions. Short for

application programming interface. 96
ATI Canada-based GPUsmanufacturing company; bought by AMD in 2006. 3, 4, 5, 6,

7, 8, 9

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 2, 3, 4, 5, 6, 7, 8, 9, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 90, 91, 92,
96

JSC Jülich Supercomputing Centre, the supercomputing institute of
Forschungszentrum Jülich, Germany. 96
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Glossary II
JURECA Amulti-purpose supercomputer at JSC. 15
JUWELS Jülich’s new supercomputer, the successor of JUQUEEN. 12, 13, 14

NVIDIA US technology company creating GPUs. 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 50, 51, 52,
95, 97

OpenACC Directive-based programming, primarily for many-core machines. 1, 73, 78, 79,
80, 81, 82, 83, 84, 85, 86

OpenCL The Open Computing Language. Framework for writing code for heterogeneous
architectures (CPU, GPU, DSP, FPGA). The alternative to CUDA. 3, 4, 5, 6, 7, 8, 9, 73

OpenGL The Open Graphics Library, an API for rendering graphics across different
hardware architectures. 3, 4, 5, 6, 7, 8, 9

OpenMP Directive-based programming, primarily for multi-threadedmachines. 73
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Glossary III
SAXPY Single-precision A× X+ Y. A simple code example of scaling a vector and adding

an offset. 75, 76, 77

Tesla The GPU product line for general purpose computing computing of NVIDIA. 12
Thrust A parallel algorithms library for (among others) GPUs. See

https://thrust.github.io/. 73

CPU Central Processing Unit. 12, 15, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 75, 95, 96

GPU Graphics Processing Unit. 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 64, 67, 74, 77, 90, 91, 92, 95,
96, 97
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Glossary IV

SIMD Single Instruction, Multiple Data. 43, 44, 45, 46, 47, 48, 49, 50, 51, 52

SIMT Single Instruction, Multiple Threads. 23, 24, 25, 38, 39, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52

SM Streaming Multiprocessor. 43, 44, 45, 46, 47, 48, 49, 50, 51, 52

SMT Simultaneous Multithreading. 43, 44, 45, 46, 47, 48, 49, 50, 51, 52
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