SUPERCOMPUTING

JULICH
CENTRE

JULICH

Forschungszentr

o)

<

S

E

— £

N g

o g

2n

v £

0 5

U‘

52 &

...UCH

T

VO o

5 QO ¢

T < 2

O c =

rel

EQ'! Jlu. n X
. b b bl WOM
" [
m, P%m
O -> K

1W1h«twv..mﬂ;5¢

Outline

Introduction
GPU History
GPU History
Architecture Comparison

Julich Systems
JUWELS Cluster
JUWELS Booster
JURECADC

App Showcase

Member of the Helmholtz Association

Platform

3 Core Features
Memory
Asynchronicity
SIMT

High Throughput
Summary
Programming GPUs
Libraries
GPU programming models

CUDA C/C++
Parallel Model

Conclusions

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Slide 1135

History of GPUs

A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 27 October 2021 slide 2135 J Forschungszentrum

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

History of GPUs

A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 27 October 2021 Slide 2135

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

History of GPUs

A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 27 October 2021 slide 2135 J Forschungszentrum

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

History of GPUs

A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA

2009 OpenCL

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 27 October 2021 slide 2135 J Forschungszentrum

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

History of GPUs

A short but unparalleled story

1999

2001

2007
2009
2020

@) JULICH
Member of the Helmholtz Association 27 October 2021 slide 2135 J Forschungszentrum

Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]

»GPU« coined by NVIDIA [3]

NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

CUDA

OpenCL

Top 500: 25 % with NVIDIA GPUs (#2, #3) [4], Green 500: 9 of top 10 with GPUs [5]

JULICH
SUPERCOMPUTING
CENTRE

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

History of GPUs

A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA

2009 OpenCL

2020 Top 500: 25 % with NVIDIA GPUs (#2, #3) [4], Green 500: 9 of top 10 with GPUs [5]

2021 E®: Leonardo (250 PFLOP/s*, Italy), NVIDIA GPUs; LUMI (552 PFLOP/s, Finland), AMD GPUs
E==: Frontier (> 1.5 EFLOP/s, ORNL), AMD GPUs

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 27 October 2021 Slide 2135

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

History of GPUs

A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA

2009 OpenCL

2020 Top 500: 25 % with NVIDIA GPUs (#2, #3) [4], Green 500: 9 of top 10 with GPUs [5]

2021 E®: Leonardo (250 PFLOP/s*, Italy), NVIDIA GPUs; LUMI (552 PFLOP/s, Finland), AMD GPUs

: Frontier (> 1.5 EFLOP/s, ORNL), AMD GPUs

27?

: Aurora (=~ 1 EFLOP/s, Argonne), Intel GPUs; El Capitan (= 2 EFLOP/s, LLNL), AMD GPUs

@) JULICH
Member of the Helmholtz Association 27 October 2021 slide 2135 J Forschungszentrum

Future

&

JULICH
SUPERCOMPUTING
CENTRE

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

Status Quo Across Architectures

Performance

Theoretical Peak Performance, Double Precision

o .
3. 3 :
g10 e gD s Oy s B 7480 (KNG T N
e}
3
T
o
INTEL Xeon CPUs ——
® . . NVIDIA Tesla GPUs — [l —
102 - - - B T T R R =
. . . AMD Radeon GPUs —@)—
5 . . i
o) oS : : : : INTEL Xeon Phis —WF—
< o &
B + W ; ; ; ; ‘)
2008 2010 2012 2014 2016 2018 2020
End of Year
Member of the Helmholtz Association 27 October 2021 Slide 3135

Status Quo Across Architectures
Memory Bandwidth

Theoretical Peak Memory Bandwidth Comparison

0 Xeon Phi 7
° AP Tesla k20X i ‘
k4 <& ;
5} ‘ ‘
102 | gl B eI ot EER
© .
INTEL Xeon CPUs ——
NVIDIA Tesla GPUs —Jll—
) o 0 '
. W & & . . .
$5t®7' 6@* ! ‘ ‘ ! AMD Radeon GPUs —@—
: : : : INTEL Xeon Phis ——
10" ; . X
2008 2010 2012 2014 2016 2018 2020
End of Year
Member of the Helmholtz Association 27 October 2021 Slide 3135

JUWELS Cluster - Jiilich’s Scalable System
= 2500 nodes with Intel Xeon CPUs (2 x 24 cores)
= 46 + 10 nodes with 4 NVIDIA Tesla V100 cards (16 GB memory)
= 10.4 (CPU) + 1.6 (GPU) PFLOP/s peak performance (Top500: #65)

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 4135 Forschungszentrum CENTRE

JUWELS Booster - Scaling Higher!
= 936 nodes with AMD EPYC Rome CPUs (2 x 24 cores)
= Each with 4 NVIDIA A100 Ampere GPUs (each: Froarc ;_97‘5 TFLOP/s, 40 GB memory)
= InfiniBand DragonFly+ HDR-200 network; 4 x 200 Gbit/s per node

@) JULICH
Member of the Helmholtz Association 27 October 2021 Slide 5135 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

The List

Top500 List Jun 2021:
= #1 Europe
= #8 World
= #2* Green500

JUWELS Booster - Scaling Higher!
= 936 nodes with AMD EPYC Rome CPUs (2 x 24 cores)
= Each with 4 NVIDIA A100 Ampere GPUs (each: ""*/'"" 19> TFLOP /s, 40 GB memory)
= InfiniBand DragonFly+ HDR-200 network; 4 x 200 Gbit/s per node

@) JULICH
Member of the Helmholtz Association 27 October 2021 Slide 5135 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

https://www.top500.org/lists/top500/2020/11/

JURECA DC - Multi-Purpose
768 nodes with AMD EPYC Rome CPUs (2 x 64 cores)

192 nodes with 4 NVIDIA A100 Ampere GPUs
InfiniBand DragonFly+ HDR-100 network

Also: JURECA Booster: 1640 nodes with Intel Xeon Phi Knights Landing
J U L I c H élLJJII;‘gI:COMPUTING

Member of the Helmholtz Association 27 October 2021 Slide 6135 Forschungszentrum CENTRE

Getting GPU-Acquainted

Some Applications

Location of Code:
1-Basics/Tasks/01-Getting-Started

See Instructions.iypnb for hints.

Member of the Helmholtz Association 27 October 2021 Slide 7135

Getting GPU-Acquainted

Some Applications

Location of Code:
1-Basics/Tasks/01-Getting-Started

See Instructions.iypnb for hints.

Member of the Helmholtz Association 27 October 2021 Slide 7135

Getting GPU-Acquainted

Some Applications

DGEMM Benchmark

—e— CPU
4000 —m— GPU

3000

2000

GFLOP/s

1000

0 2000 4000 6000 8000 10000 12000 14000 16000
Size of Square Matrix

Mandelbrot Benchmark

—e— (PU
1500 % GPU

/s

1000

ixel

MP

500

0 5000 10000 15000 20000 25000 30000
Width of Image

Member of the Helmholtz Association 27 October 2021

N-Body Benchmark

—— 1GPUSP
20000 —m— 2 GPUs SP
- —4— 4GPUs SP
g 15000 _g- 1 GpPUDP
= - 2 GPUs DP
& 10000
o -4~ 4GPUsDP
5000
0
0 20000 40000 60000 80000 100000 120000
Number of Particles
DDot Benchmark
10%
10?
10t Device
—o— CPU
100 —=— GPU
10° 10* 10° 106 107 108 10°
Vector Length
Slide 7135

Platform

CPU vs. GPU

A matter of specialties

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 9135 Forschungszentvum CENTRE

CPU vs. GPU

A matter of specialties

Transporting one Transporting many

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 9135 Forschungszentvum CENTRE

CPU vs. GPU

Chip

LU
Control
U

L

Cache

@) JULICH | &=
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 10135 Forschungszentrum CENTRE

GPU Architecture

Overview
Aim: Hide Latency
Everything else follows

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 11135 Forschungszentrum CENTRE

GPU Architecture

Overview
Aim: Hide Latency
Everything else follows
SIMT

Asynchronicity

Memory

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 11135 Forschungszentrum CENTRE

GPU Architecture

Overview
Aim: Hide Latency
Everything else follows
SIMT

Asynchronicity

Memory

@) JULICH | &=
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 11135 Forschungszentrum CENTRE

Memory

GPU memory ain’t no CPU memory

= GPU: accelerator / extension card
— Separate device from CPU

Member of the Helmholtz Association 27 October 2021

Slide 12135

9

Control

JULICH

Forschungszentrum

Device

JULICH
SUPERCOMPUTING
CENTRE

Memory

GPU memory ain’t no CPU memory

m GPU: accelerator / extension card
— Separate device from CP
Separate memory, but UVA

>
2
g
z |z
E|Z

Cache

IIIIIIIIIIIIIIIIII
o
—
—

DRAM

Device

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 12135 Forschungszentrum CENTRE

Memory

GPU memory ain’t no CPU memory

= GPU: accelerator / extension card
— Separate device from CPU
Separate memory, but UVA

Member of the Helmholtz Association 27 October 2021

Control

PCle 4
~32GB/s

Il

HBM2
" 1555GB/s

Device

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Slide 12135

Memory

GPU memory ain’t no CPU memory

Control

= GPU: accelerator / extension card
— Separate device from CPU
Separate memory, but UVA
= Memory transfers need special consideration!
Do as little as possible!

PCle 4
~32GB/s

Il

HBM2
" 1555GB/s

Device

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 27 October 2021 Slide 12135

Memory

GPU memory ain’t no CPU memory

Host

= GPU: accelerator / extension card
— Separate device from CPU
Separate memory, but UVA and UM
= Memory transfers need special consideration! |
Do as little as possible!
= Choice: automatic transfers (convenience) or manual transfers (control)

PCle 4
~32GB/s

HBM2
1555GB/s

Device

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 27 October 2021 Slide 12135

Memory

GPU memory ain’t no CPU memory

Host

= GPU: accelerator / extension card
— Separate device from CPU
Separate memory, but UVA and UM
= Memory transfers need special consideration! |
Do as little as possible!
= Choice: automatic transfers (convenience) or manual transfers (control)

PCle 4
~32GB/s

HBM2
1555GB/s

Device

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 27 October 2021 Slide 12135

Memory

GPU memory ain’t no CPU memory

Host

= GPU: accelerator / extension card
— Separate device from CPU
Separate memory, but UVA and UM
= Memory transfers need special consideration! |
Do as little as possible!
= Choice: automatic transfers (convenience) or manual transfers (control)
V100 A100
RAM, 900 GB/s

PCle 4
~32GB/s

HBM2
1555GB/s

32GB

Device

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 27 October 2021 Slide 12135

Processing Flow
CPU — GPU — CPU

CPU

CPU Memory

Member of the Helmholtz Association 27 October 2021 Slide 13135

Processing Flow
CPU — GPU — CPU

CPU

Interconnect

L2
Transfer data from CPU memory to GPU memory _
DRAM

CPU Memory

Member of the Helmholtz Association 27 October 2021 Slide 13135

Processing Flow
CPU — GPU — CPU

T

CPU Memory

Transfer data from CPU memory to GPU memory, transfer
program

Member of the Helmholtz Association 27 October 2021 Slide 13135

Scheduler

Processing Flow
CPU — GPU — CPU

CPU

CPU Memory

Transfer data from CPU memory to GPU memory, transfer
program

Load GPU program, execute on SMs, get (cached) data from
memory; write back

Member of the Helmholtz Association 27 October 2021 Slide 13135

Interconnect

Processing Flow
CPU — GPU — CPU

CPU

CPU Memory

Transfer data from CPU memory to GPU memory, transfer
program

Load GPU program, execute on SMs, get (cached) data from
memory; write back

Transfer results back to host memory

Member of the Helmholtz Association 27 October 2021 Slide 13135

Scheduler

GPU Architecture

Overview
Aim: Hide Latency
Everything else follows
SIMT

Asynchronicity

Memory

@) JULICH | &=
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 14135 Forschungszentrum CENTRE

GPU Architecture

Overview
Aim: Hide Latency
Everything else follows
SIMT

Asynchronicity

Memory

@) JULICH | &=
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 14135 Forschungszentrum CENTRE

Async

Following different streams

= Problem: Memory transfer is comparably slow
Solution: Do something else in meantime (computation)!

— Overlap tasks
= Copy and compute engines run separately (streams)

- T - [
Ea @ .

= GPU needs to be fed: Schedule many computations
= CPU can do other work while GPU computes; synchronization

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 27 October 2021 Slide 15135

GPU Architecture

Overview
Aim: Hide Latency
Everything else follows
SIMT

Asynchronicity

Memory

@) JULICH | &=
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 16135 Forschungszentrum CENTRE

GPU Architecture

Overview
Aim: Hide Latency
Everything else follows
SIMT

Asynchronicity

Memory

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 16135 Furschungszentrum CENTRE

SIMT

Scalar
SIMT = SIMD & SMT
A + B = |G
A + [B] = [a
Al + B2 = |G
L] CPU: A+ B3 = |G
= Single Instruction, Multiple Data (SIMD)
‘J JULICH JULICH
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 17135 Forschungszentrum CENTRE

SIMT

Vector
SIMT = SIMD ¢ SMT
Ao By Co
AL By C1
+ -
Ay B, C,
= CPU: A B &

= Single Instruction, Multiple Data (SIMD)

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 17135 Forschungszentrum CENTRE

SIMT

Vector
SIMT = SIMD ¢ SMT
Ao By Co
AL By C1
+ -
Ay B, C,
= CPU: A B &

= Single Instruction, Multiple Data (SIMD)
= Simultaneous Multithreading (SMT)

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 17135 Forschungszentrum CENTRE

SIMT

Vector
SIMT = SIMD ¢ SMT
Ao By Co
Ay By C1
+ -
Ay By C
= CPU: A B &

= Single Instruction, Multiple Data (SIMD)

SMT
= Simultaneous Multithreading (SMT) —
rea
Core
Thread
‘ JULICH JULICH
‘ SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 17135 Forschungszentrum | CENTRE

SIMT

Vector
SIMT = SIMD ¢ SMT
Ao By Co
AL By G
n -
Ay B, C,
= CPU: 4 B &
= Single Instruction, Multiple Data (SIMD) SMT
= Simultaneous Multithreading (SMT) —
= GPU: Single Instruction, Multiple Threads (SIMT) Core
'] JULICH
Member of the Helmholtz Association 27 October 2021 slide 17135 ‘J :!rgunLgslzgrt! gléf'_ErFSEOMPUT\NG

SIMT

Vector
SIMT = SIMD @ SMT - - -
Ay By C1
N -
Ay By C
= CPU: A Bs G
= Single Instruction, Multiple Data (SIMD) SMT
= Simultaneous Multithreading (SMT) —
= GPU: Single Instruction, Multiple Threads (SIMT) Core
SIMT

i

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 17135 Furschungszentrum CENTRE

SIMT

SIMT = SIMD © SMT

= CPU:
= Single Instruction, Multiple Data (SIMD)
= Simultaneous Multithreading (SMT)
= GPU: Single Instruction, Multiple Threads (SIMT)
= CPU core = GPU multiprocessor (SM)
= Working unit: set of threads (32, a warp)
= Fast switching of threads (large register file)

» Branching ifC*

Member of the Helmholtz Association 27 October 2021 Slide 17135

Vector
Ao Bo Co
A B (o)
+ -

Ay B, C,
As B3 C3
SMT

Thread

Core

Thread
SIMT

i

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Sl M T Vector

SIMT = SIMD & SMT
Ao Bo Co
AL By G
+ -
Ay By @
A3 B3 C3

Thread

Core
Thread

SIMT
@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 17135 Forschungszentrum CENTRE

SI M T Vector

SIMT = SIMD & SMT
Ay Bo Co
A By G
+ =
Ay B, C,
A3 B3 &

Thread

Core
Thread

SIMT

L

Member of the Helmholtz Association 27 October 2021 Slide 17135

g JULICH | 5 upomne

Forschungszentrum CENTRE

SIMT

SIMT — SIMD &~ SMT

Member of the Helmholtz Association

Multiprocessor

Wrsz sz

wrsz sz

sz sz

wrsz sz

Wraz sz

Wraz sz

a2 sz

Wz sz

wrsz sz

‘Warp Scheduler (32 threadicik)
Dispateh Unit (32 thread/ck)

Register File (16,384 x 32-bit)

Foa2 st
Foa2 pesz
Foa2 prsz
Fow2 sz
Fos2 posz
o2 sz
Fo2 sz
st e

‘Warp Scheduler (32 threadiclk)
Dispatch Unit (32 thread/ck)

Register File (16,384 x 32-bit)

R o
B o
frsafesd s
fraafesd e
TENSOR CORE
B o
PR o
R o
R o

wraz raz
wraa raz
wrsz rsz
wrs2 Tz

wraz Tz
wraz raz
wraz raz
wrsz wrs
wrsz wrsz
wrsz nrsz

Warp Scheduler (32 threadicik)
Dispateh Unit (32 threadclk)

Register File (16,384 x 32-bit)

PR e
P e
R
P e

TENSOR CORE
Fafes e
FEEE e
R e
epsa

02
Dispatch Unit (32 threadclk)

Register File (16,384 x 32-bit)

R e
L e
s e
e
TENSOR CORE
s e
e reos
PR reos

27 October 2021

Slide 17135

9

Vector

Ao
Ay
Ay

As

Bo Co

By G
+ =

B, @

B3 @

Thread

Core
Thread

SIMT

L

JULICH | srcreonrumne

Forschungszentrum CENTRE

Low Latency vs. High Throughput

Maybe GPU’s ultimate feature

CPU Minimizes latency within each thread
GPU Hides latency with computations from other thread warps

Member of the Helmholtz Association 27 October 2021 Slide 18135

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Low Latency vs. High Throughput

Maybe GPU’s ultimate feature

CPU Minimizes latency within each thread
GPU Hides latency with computations from other thread warps

CPU Core: Low Latency

& B &

Bl Thread/Warp
Processing
Context Switch
Ready
Waiting

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 27 October 2021 Slide 18135

Low Latency vs. High Throughput

Maybe GPU’s ultimate feature

CPU Minimizes latency within each thread
GPU Hides latency with computations from other thread warps

CPU Core: Low Latency

& B &

GPU Streaming Multiprocessor: High Throughput
|
|
|
|

Member of the Helmholtz Association 27 October 2021 Slide 18135

Bl Thread/Warp
Processing
Context Switch
Ready
Waiting

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

CPU vs. GPU

Let’s summarize this!

Optimized for low latency

+

+
+
+
+

Large main memory

Fast clock rate

Large caches

Branch prediction

Powerful ALU

Relatively low memory bandwidth
Cache misses costly

Low performance per watt

Member of the Helmholtz Association 27 October 2021

Optimized for hlgh throughput

High bandwidth main memory
Latency tolerant (parallelism)
More compute resources

High performance per watt

— Limited memory capacity

— Low per-thread performance
— Extension card

+

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Slide 19135 J Forschungszentrum

Programming GPUs

Summary of Acceleration Possibilities

Application

Programming
Languages

Libraries Directives

Drop-in Easy Flexible
Acceleration Acceleration Acceleration

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 27 October 2021 slide 21135 J Forschungszentrum

Summary of Acceleration Possibilities

Application

Programming
Languages

Libraries Directives

Drop-in Easy Flexible
Acceleration Acceleration Acceleration

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 27 October 2021 slide 21135 J Forschungszentrum

Libraries _ _
Programming GPUs is easy:

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 22135 Forschungszentrum CENTRE

Libraries _ _
Programming GPUs is easy:

Use applications & libraries

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 22135 Forschungszentrum CENTRE

Libraries
Programming GPUs is easy:

Use applications & libraries

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 22135 Forschungszentrum CENTRE

10

Libraries
Programming GPUs is easy:

Use applications & libraries

CUSPARSE

cuBLAS

cuDNN

{A} ArRRAYFIRE

Numba

CuRAND f
CUDA Math

@) JULICH
Member of the Helmholtz Association 27 October 2021 Slide 22135 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

10

Libraries
Programming GPUs is easy:

Use applications & libraries

=] o
CUSPARSE

cuBLAS

cuDNN

{A} ArRRAYFIRE

Numba

CuRAND f
CUDA Math

@) JULICH
Member of the Helmholtz Association 27 October 2021 Slide 22135 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

10

Summary of Acceleration Possibilities

Application

Programming
Languages

Libraries Directives

Drop-in Easy Flexible
Acceleration Acceleration Acceleration

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 27 October 2021 slide 23135 J Forschungszentrum

Summary of Acceleration Possibilities

Application

Programming
Languages

Libraries Directives

Drop-in Easy Flexible
Acceleration Acceleration Acceleration

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 27 October 2021 Slide 23135 J Forschungszentrum

A Parallelism

Libraries are not enough?

You think you want to write your own GPU code?

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 24135 Forschungszentrum CENTRE

Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for
N parallel processors

Total Time t = tserial + tparallel

Member of the Helmholtz Association 27 October 2021

Slide 25135

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for
N parallel processors

Total Time t = tserial + tparallel
N Processors t(N) = ts + t, /N

Member of the Helmholtz Association 27 October 2021 Slide 25135

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Primer on Parallel Scaling

Amdahl’s Law

Possible maximum speedup for
N parallel processors

Total Time t = tserial + tparallel
N Processors t(N) = ts + tp/N

Speedup s(N) = t/t(N) = tstj;pt?/v

Member of the Helmholtz Association 27 October 2021 Slide 25135

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Primer on Parallel Scaling

Amdahl’s Law

Possible maximum speedup for
N parallel processors

Total Time t = tserial + tparallel
N Processors t(N) = ts + t, /N

Speedup s(N) = t/t(N) = tstj:p%

Member of the Helmholtz Association 27 October 2021

Speedup

100
—— Parallel Portion: 50%
80 ——— Parallel Portion: 75%
——— Parallel Portion: 90%
—— Parallel Portion: 95%
60 Parallel Portion: 99%
40
) /
0
1 2 4 8 16 32 64 128 256 512 102420484096

Number of Processors

JULICH

Slide 25135 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

A Parallelism

Parallel programming is not easy!

Things to consider:
= |s my application computationally intensive enough?
= What are the levels of parallelism?
= How much data needs to be transferred?
= |s the gain worth the pain?

Member of the Helmholtz Association 27 October 2021 Slide 26135

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Alternatives
The twilight

There are alternatives to CUDA C, which can ease the pain...
= OpenACC, OpenMP
= Thrust
= Kokkos, RAJA, ALPAKA, SYCL, DPC++, pSTL
= PyCUDA, Cupy, Numba
Other alternatives
= CUDA Fortran
= HIP
= OpenCL

JULICH
SUPERCOMPUTING

Forschungszentrum CENTRE

@) JULICH
Member of the Helmholtz Association 27 October 2021 Slide 27135 J

Programming GPUs
CUDA C/C++

Preface: CPU

A simple CPU program!

SAXPY: y = aX + y, with single precision

Part of LAPACK BLAS Level 1

void saxpy(int n, float a, float * x, float * y) {

for (int 1 = 0; 1 < n; i++)
y[il = a » x[i] + y[il];
}
int a = 42;
int n = 10;
float x[n], yInl;
// Fill x, y

saxpy(n, a, x, y);

Member of the Helmholtz Association 27 October 2021

Slide 29135

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

http://www.netlib.org/lapack/

CUDA SAXPY

With runtime-managed data transfers

__global__ void saxpy_cuda(int n, float a, float * x, float » y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a = x[i] + y[i];
}

int a = 42;

int n = 10;

float x[n], yInl;

// Fill x, y

cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n = sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, X, y);

cudaDeviceSynchronize();

g JULICH

Member of the Helmholtz Association 27 October 2021 Slide 30135 Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA SAXPY

With runtime-managed data transfer

__global 4 void saxpy_cuda(int n, float a, float * x, float * y) { Specify kernel
int i = blockIdx.x * blockDim.x + threadIdx.x; :
if (1<n)e——— ID variables

y[il = a = x[i] + y[i];

Guard against

} too many threads
int a = 42;
int n = 10;

float x[n], yInl; Allocate GPU-capable
// fill x, y / memory
cudaMallocManaged(&x, n = sizeof(float));

cudaMallocManaged(&y, n = sizeof(float)); Call kernel

/—‘ 2 blocks, each 5 threads
saxpy_cuda<<<2, 5>>>(n, a, X, y);

?

cudaDeviceSynchronize();0// SR il

9 JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Member of the Helmholtz Association 27 October 2021 Slide 31135

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 32135 Forschungszentrum CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

= Thread
O s

Member of the Helmholtz Association 27 October 2021

Slide 32135

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

= Threads
AN

Member of the Helmholtz Association 27 October 2021

Slide 32135

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

= Threads %

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 32135 Furschungszentrum CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

= Threads —
:

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 32135 Furschungszentrum CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

= Threads —>
"
© €y @

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 32135 Forschungszentvum CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

= Threads —>

Member of the Helmholtz Association 27 October 2021

Slide 32135

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

= Threads —>

» Threads & blocks in 3D

Member of the Helmholtz Association 27 October 2021

Slide 32135

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

= Threads % i i
+ [Blocks] -+ 6rid| e i
0 © @

» Threads & blocks in 3D

= Execution entity: threads
= Lightweight — fast switchting!
= 1000s threads execute simultaneously — order non-deterministic!
= OpenAcCC takes care of threads and blocks for you!
— Block configuration is just an optimization!

@) JULICH
Member of the Helmholtz Association 27 October 2021 Slide 32135 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Summary of Acceleration Possibilities

Application

Programming
Languages

Libraries Directives

Drop-in Easy Flexible
Acceleration Acceleration Acceleration

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 27 October 2021 Slide 33135 J Forschungszentrum

Summary of Acceleration Possibilities

Application
Libraries = -II
Drop-in Easy
Acceleration Acceleration
Member of the Helmholtz Association 27 October 2021 Slide 33135

Programming
Languages

Flexible
Acceleration

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Conclusions

Conclusions

GPUs achieve performance by specialized hardware — threads

= Faster time-to-solution
= Lower energy-to-solution

GPU acceleration can be done by different means
Libraries are the easiest, CUDA the fullest
OpenACC good compromise

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 27 October 2021 slide 35135 J Forschungszentrum

Conclusions

GPUs achieve performance by specialized hardware — threads

= Faster time-to-solution
= Lower energy-to-solution

GPU acceleration can be done by different means
Libraries are the easiest, CUDA the fullest
OpenACC good compromise

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 27 October 2021 slide 35135 J Forschungszentrum

Conclusions

GPUs achieve performance by specialized hardware — threads

= Faster time-to-solution
= Lower energy-to-solution

GPU acceleration can be done by different means
Libraries are the easiest, CUDA the fullest
OpenACC good compromise

Thank you
ur attention’

for yo

de
a.herten@fZ ch-

Jueh

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 27 October 2021 slide 35135 J Forschungszentrum

mailto:a.herten@fz-juelich.de

Appendix

Appendix

Glossary
References
@) JULICH| &
SUPERCOMPUTING
Member of the Helmholtz Association 27 October 2021 Slide 219 Furschungszen"u,—n CENTRE

Glossary |

AMD Manufacturer of CPUs and GPUs. 3,4,5,6,7,8,9
Ampere GPU architecture from NVIDIA (announced 2019). 13, 14, 15

APl A programmatic interface to software by well-defined functions. Short for
application programming interface. 96

ATl Canada-based GPUs manufacturing company; bought by AMD in 2006. 3, 4, 5, 6,
78,9

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++.2,3,4,5,6,7,8,9,73,74,76,77,78,79, 80, 81, 82, 83, 84, 85, 86,90, 91, 92,
96

JSC Jilich Supercomputing Centre, the supercomputing institute of
Forschungszentrum Jilich, Germany. 96

@) JULICH
Member of the Helmholtz Association 27 October 2021 slide 319 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Glossary I

JURECA
JUWELS

NVIDIA

OpenACC

OpenCL

OpenGL

OpenMP

@) JULICH
Member of the Helmholtz Association 27 October 2021 Slide 419 J

A multi-purpose supercomputer at JSC. 15
Jilich’s new supercomputer, the successor of JUQUEEN. 12,13, 14

US technology company creating GPUs. 3,4,5,6,7,8,9, 12,13, 14, 15, 50, 51, 52,
95,97

Directive-based programming, primarily for many-core machines. 1,73, 78, 79,
80, 81, 82, 83, 84, 85, 86

The Open Computing Language. Framework for writing code for heterogeneous
architectures (CPU, GPU, DSP, FPGA). The alternative to CUDA. 3,4,5,6,7, 8,9, 73

The Open Graphics Library, an API for rendering graphics across different
hardware architectures. 3,4,5,6,7, 8,9

Directive-based programming, primarily for multi-threaded machines. 73

JULICH
SUPERCOMPUTING
CENTRE

Forschungszentrum

Glossary Il

SAXPY Single-precision A x X 4 Y. Asimple code example of scaling a vector and adding
an offset. 75, 76, 77

Tesla The GPU product line for general purpose computing computing of NVIDIA. 12

Thrust A parallel algorithms library for (among others) GPUs. See
https://thrust.github.io/. 73

CPU Central Processing Unit. 12, 15, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37,43,44,45,46,47,48, 49, 50,51, 52,75, 95, 96

GPU Graphics Processing Unit. 1,2, 3,4,5,6,7,8,9, 12,13, 14,15, 16, 17, 18, 20, 21,
22,23, 24,25, 26,27, 28,29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,41, 42,43, 44, 45,
46, 47,48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 64, 67, 74, 77, 90, 91, 92, 95,
96, 97

@) JULICH
Member of the Helmholtz Association 27 October 2021 Slide 519 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

https://thrust.github.io/

Glossary IV

SIMD Single Instruction, Multiple Data. 43, 44, 45, 46, 47,48, 49, 50, 51, 52

SIMT Single Instruction, Multiple Threads. 23, 24, 25, 38, 39, 41, 42, 43, 44, 45, 46, 47,
48,49, 50,51, 52

SM Streaming Multiprocessor. 43, 44, 45, 46, 47, 48, 49, 50, 51, 52
SMT Simultaneous Multithreading. 43, 44, 45, 46, 47, 48, 49, 50, 51, 52

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 27 October 2021

References |

(2]

@) JULICH
Member of the Helmholtz Association 27 October 2021 slide 719 J Forschungszentrum

Kenneth E. Hoff Ill et al. “Fast Computation of Generalized Voronoi Diagrams Using
Graphics Hardware.” In: Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH *99. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 1999, pp. 277-286. ISBN: 0-201-48560-5. DOI:
10.1145/311535.311567. URL: http://dx.doi.org/10.1145/311535.311567
(pages 3-9).

Chris McClanahan. “History and Evolution of GPU Architecture.” In: A Survey Paper
(2010). urRL: http://mcclanahoochie.com/blog/wp-
content/uploads/2011/03/gpu-hist-paper.pdf (pages 3-9).

Jack Dongarra et al. TOP500. June 2019. URL:
https://www.top500.0rg/lists/2019/06/ (pages 3-9).

JULICH
SUPERCOMPUTING
CENTRE

https://doi.org/10.1145/311535.311567
http://dx.doi.org/10.1145/311535.311567
http://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf
http://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf
https://www.top500.org/lists/2019/06/

References I

[5] Jack Dongarra et al. Green500. June 2019. URL:
https://www.top500.0rg/green500/1ists/2019/06/ (pages 3-9).

[6] Karl Rupp. Pictures: CPU/GPU Performance Comparison. URL:
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-
characteristics-over-time/ (pages10,11).

[10] Wes Breazell. Picture: Wizard. urL:
https://thenounproject.com/wes13/collection/its-a-wizards-world/
(pages 60-64).

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 27 October 2021 slide 819 J Forschungszentrum

https://www.top500.org/green500/lists/2019/06/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://thenounproject.com/wes13/collection/its-a-wizards-world/

References: Images, Graphics |

[1] Héctor J. Rivas. Color Reels. Freely available at Unsplash. urL:
https://unsplash.com/photos/87hFrPk3V-s.

[7] Forschungszentrum Jilich GmbH (Ralf-Uwe Limbach). JUWELS Booster.

[8] Mark Lee. Picture: kawasaki ninja. URL:
https://www.flickr.com/photos/pochacco20/39030210/ (pages 20, 21).

[9] Shearings Holidays. Picture: Shearings coach 636. URL:
https://www.flickr.com/photos/shearings/13583388025/ (pages 20, 21).

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 27 October 2021 slide 919 J Forschungszentrum

https://unsplash.com/photos/87hFrPk3V-s
https://www.flickr.com/photos/pochacco20/39030210/
https://www.flickr.com/photos/shearings/13583388025/

	Outline
	Introduction
	GPU History
	GPU History
	Architecture Comparison
	Jülich Systems
	JUWELS Cluster
	JUWELS Booster
	JURECA DC

	App Showcase

	Platform
	3 Core Features
	Memory
	Asynchronicity
	SIMT

	High Throughput
	Summary

	Programming GPUs
	Libraries
	*gpu programming models
	CUDA C/C++
	Parallel Model

	Conclusions
	Appendix
	Appendix
	Glossary

	Glossary
	Acronyms
	References

	References
	References

