
INTRODUCTION TO OPENACC
PRACE OPENACC COURSE 2021
27 October 2021 Andreas Herten Forschungszentrum Jülich

Member of the Helmholtz Association

Outline
OpenACC

History
OpenMP
Modus Operandi
OpenACC’s Models

OpenACC by Example
OpenACCWorkflow
Identify Parallelism
Parallelize Loops

parallel
loops
Nisght Systems
kernels

Data Transfers
GPUMemory Spaces
Portability
Clause: copy
Nsight Systems

Data Locality
Analyse Flow
data
enter data

Routines

Other Directives
Clause: gang

Conclusions
List of Tasks

Member of the Helmholtz Association 27 October 2021 Slide 1 75

OpenACC Mission Statement

[…]OpenACC [is] forwriting parallel programs in C, C++, and Fortran that
run identified regions in parallel on multicore CPUs or attached acceler-
ators.
[…] a model for parallel programming that is portable across operating
systems and various types of multicore CPUs and accelerators.
– OpenACC API Documentation, openacc.org

Member of the Helmholtz Association 27 October 2021 Slide 2 75

https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC.3.0.pdf
openacc.org

OpenACC History
2011 OpenACC 1.0 specification is released at SC11

NVIDIA, Cray, PGI, CAPS
2013 OpenACC 2.0: More functionality, portability
2015 OpenACC 2.5: Enhancements, clarifications
2017 OpenACC 2.6: Deep copy, …
2019 OpenACC 3.0: Newer C++, more lambdas, …
2020 OpenACC 3.1: C++ range-based for loops, Fortran DO

CONCURRENT,…
Run as a non-profit organization, OpenACC.org
Members from industry and academia

→ https://www.openacc.org/ (see also: Best practice guide)

OpenACC-enabled
Applications

ANSYS Fluent
Gaussian
VASP
COSMO
GTC
SOMA
…

Member of the Helmholtz Association 27 October 2021 Slide 3 75

https://www.openacc.org/sites/default/files/inline-files/OpenACC_1_0_specification.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_2_0_specification.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_2pt5.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.6.final.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC.3.0.pdf
https://www.openacc.org/blog/openacc-30
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.1-final.pdf
https://www.openacc.org/blog/announcing-openacc-31
https://www.openacc.org/
http://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0.pdf

Open{MP↔ACC}
Everything’s connected

OpenACCmodeled after OpenMP …
…but specific for accelerators
OpenMP 4.0/4.5: Offloading; compiler support improving (Clang, XL, GCC,…)

OpenACCmore descriptive, OpenMPmore prescriptive
OpenMP 5.0: Descriptive directive loop
Same basic principle: Fork/join model
Master thread launches parallel child threads; merge after execution

master masterfo
rk

parallel

jo
in

OpenMP

master masterfo
rk

parallel

jo
in

OpenACC

Member of the Helmholtz Association 27 October 2021 Slide 4 75

Open{MP↔ACC}
Everything’s connected

OpenACCmodeled after OpenMP …
…but specific for accelerators
OpenMP 4.0/4.5: Offloading; compiler support improving (Clang, XL, GCC,…)

OpenACCmore descriptive, OpenMPmore prescriptive
OpenMP 5.0: Descriptive directive loop
Same basic principle: Fork/join model
Master thread launches parallel child threads; merge after execution

master masterfo
rk

parallel
jo
in

OpenMP

master masterfo
rk

parallel

jo
in

OpenACC

Member of the Helmholtz Association 27 October 2021 Slide 4 75

Open{MP↔ACC}
Everything’s connected

OpenACCmodeled after OpenMP …
…but specific for accelerators
OpenMP 4.0/4.5: Offloading; compiler support improving (Clang, XL, GCC,…)

OpenACCmore descriptive, OpenMPmore prescriptive
OpenMP 5.0: Descriptive directive loop
Same basic principle: Fork/join model
Master thread launches parallel child threads; merge after execution

master masterfo
rk

parallel
jo
in

OpenMP

master masterfo
rk

parallel

jo
in

OpenACC

Member of the Helmholtz Association 27 October 2021 Slide 4 75

OpenACC
Modus Operandi

OpenACC Acceleration Workflow
Three-step program

1 Annotate code with directives, indicating parallelism
2 OpenACC-capable compiler generates accelerator-specific code
3 $uccess

Member of the Helmholtz Association 27 October 2021 Slide 6 75

1 Directives
pragmatic

Compiler directives state intend to compiler
C/C++
#pragma acc kernels
for (int i = 0; i < 23; i++)
// ...

Fortran
!$acc kernels
do i = 1, 24
! ...
!$acc end kernels

Ignored by compiler which does not understand OpenACC
OpenACC: Compiler directives, library routines, environment variables
Portable across host systems and accelerator architectures

Member of the Helmholtz Association 27 October 2021 Slide 7 75

2 Compiler
Simple and abstracted

Trust compiler to generate intended parallelism; always check status output!
No need to know details of accelerator; leave it to expert compiler engineersTuning possible

One code can target different accelerators: GPUs, CPUs→ Portability

Compiler Targets Languages OSS Free Comment

NVIDIA GPU, CPU C, C++, Fortran No Yes Best performance

GCC NVIDIA GPU, AMD GPU C, C++, Fortran Yes Yes

Clang/LLVM CPU, NVIDIA GPU C, C++ Yes Yes
Via Clang

OpenMP backend
Also: flacc

Member of the Helmholtz Association 27 October 2021 Slide 8 75

https://gcc.gnu.org/wiki/OpenACC
https://csmd.ornl.gov/project/clacc

2 Compiler
Simple and abstracted

Trust compiler to generate intended parallelism; always check status output!
No need to know details of accelerator; leave it to expert compiler engineersTuning possible

One code can target different accelerators: GPUs, CPUs→ Portability

Compiler Targets Languages OSS Free Comment

NVIDIA HPC SDK NVIDIA GPU, CPU C, C++, Fortran No Yes Best performance

GCC NVIDIA GPU, AMD GPU C, C++, Fortran Yes Yes

Clang/LLVM CPU, NVIDIA GPU C, C++ Yes Yes
Via Clang

OpenMP backend
Also: flacc

Member of the Helmholtz Association 27 October 2021 Slide 8 75

https://developer.nvidia.com/hpc-sdk
https://gcc.gnu.org/wiki/OpenACC
https://csmd.ornl.gov/project/clacc

2 Compiler
Simple and abstracted

Trust compiler to generate intended parallelism; always check status output!
No need to know details of accelerator; leave it to expert compiler engineersTuning possible

One code can target different accelerators: GPUs, CPUs→ Portability

Compiler Targets Languages OSS Free Comment

NVHPC NVIDIA GPU, CPU C, C++, Fortran No Yes Best performance

GCC NVIDIA GPU, AMD GPU C, C++, Fortran Yes Yes

Clang/LLVM CPU, NVIDIA GPU C, C++ Yes Yes
Via Clang

OpenMP backend
Also: flacc

Member of the Helmholtz Association 27 October 2021 Slide 8 75

https://developer.nvidia.com/hpc-sdk
https://gcc.gnu.org/wiki/OpenACC
https://csmd.ornl.gov/project/clacc

2 Compiler
Simple and abstracted

Trust compiler to generate intended parallelism; always check status output!
No need to know details of accelerator; leave it to expert compiler engineersTuning possible

One code can target different accelerators: GPUs, CPUs→ Portability

Compiler Targets Languages OSS Free Comment

NVHPC NVIDIA GPU, CPU C, C++, Fortran No Yes Best performance

GCC NVIDIA GPU, AMD GPU C, C++, Fortran Yes Yes

Clang/LLVM CPU, NVIDIA GPU C, C++ Yes Yes
Via Clang

OpenMP backend
Also: flacc

Formerly: PGI

Member of the Helmholtz Association 27 October 2021 Slide 8 75

https://developer.nvidia.com/hpc-sdk
https://gcc.gnu.org/wiki/OpenACC
https://csmd.ornl.gov/project/clacc

2 Compiler
Flags and options

OpenACC compiler support: activate with compile flag
NVHPC nvc -acc

-acc=gpu|multicore Target GPU or CPU
-acc=gpu -gpu=cc80 Generate Ampere-compatible code
-gpu=cc80,lineinfo Add source code correlation into binary

-gpu=managed Use unified memory
-Minfo=accel Print acceleration info

GCC gcc -fopenacc
-fopenacc-dim=geom Use geom configuration for threads

-foffload="-lm -O3" Provide flags to offload compiler
-fopt-info-omp Print acceleration info

Member of the Helmholtz Association 27 October 2021 Slide 9 75

3 $uccess
Iteration is key

Serial to parallel: fast
Serial to fast parallel: more time needed
Start simple→ refine
Expose more andmore parallelism

⇒ Productivity

Because of generality: Sometimes not last bit of hardware performance accessible
But: Use OpenACC together with other accelerator-targeting techniques (CUDA, libraries,
…)

Expose
Parallelism

CompileMeasure

Member of the Helmholtz Association 27 October 2021 Slide 10 75

OpenACC Accelerator Model
For computation andmemory spaces

Main program executes on host
Device code is transferred to accelerator
Execution on accelerator is started
Host waits until return (except: async)

Two separate memory spaces; data
transfers back and forth

Transfers hidden from programmer
Memories not coherent!
Compiler helps; GPU runtime helps

Start main
program

Wait for code

Run code

Finish code
Return to host

Transfer

W
ai
t

Host Memory Device
Memory

DMA Transfers

Member of the Helmholtz Association 27 October 2021 Slide 11 75

A Glimpse of OpenACC

#pragma acc data copy(x[0:N],y[0:N])
#pragma acc parallel loop
{

for (int i=0; i<N; i++) {
x[i] = 1.0;
y[i] = 2.0;

}
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
}

}

!$acc data copy(x(1:N),y(1:N))
!$acc parallel loop

do i = 1, N
x(i) = 1.0
y(i) = 2.0

end do
do i = 1, N

y(i) = i*x(i)+y(i);
end do

!$acc end parallel loop
!$acc end data

Member of the Helmholtz Association 27 October 2021 Slide 12 75

OpenACC by Example

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 27 October 2021 Slide 14 75

Jacobi Solver
Algorithmic description

Example for acceleration: Jacobi solver
Iterative solver, converges to correct value
Each iteration step: compute average of neighboring points
Example: 2D Poisson equation: ∇2A(x, y) = B(x, y)

Ai,j+1

Ai−1,j

Ai,j−1

Ai+1,j

Data Point
Boundary Point
Stencil

Ak+1(i, j) = −

1
4
(B(i, j)− (Ak(i− 1, j) + Ak(i, j+ 1),+Ak(i+ 1, j) + Ak(i, j− 1)))

Member of the Helmholtz Association 27 October 2021 Slide 15 75

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}
27 October 2021 Slide 16 75

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

27 October 2021 Slide 16 75

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Iterate across
matrix elements

27 October 2021 Slide 16 75

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Iterate across
matrix elements

Calculate new value
from neighbors

27 October 2021 Slide 16 75

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Iterate across
matrix elements

Calculate new value
from neighbors

Accumulate error

27 October 2021 Slide 16 75

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Iterate across
matrix elements

Calculate new value
from neighbors

Accumulate error

Swap input/output

27 October 2021 Slide 16 75

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Iterate across
matrix elements

Calculate new value
from neighbors

Accumulate error

Swap input/output

Set boundary conditions

27 October 2021 Slide 16 75

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 27 October 2021 Slide 17 75

Profiling
Profile

[…] premature optimization is the root of all evil.

Yet we should not pass up our [optimization] opportunities […]

– Donald Knuth [3]

Investigate hot spots of your program!
→ Profile!

Many tools, many levels: perf, PAPI, Score-P, Intel Advisor, NVIDIA profilers, …
Here: Examples from GCC

Member of the Helmholtz Association 27 October 2021 Slide 18 75

Profiling
Profile

[…] premature optimization is the root of all evil.
Yet we should not pass up our [optimization] opportunities […]
– Donald Knuth [3]

Investigate hot spots of your program!
→ Profile!

Many tools, many levels: perf, PAPI, Score-P, Intel Advisor, NVIDIA profilers, …
Here: Examples from GCC

Member of the Helmholtz Association 27 October 2021 Slide 18 75

Identify Parallelism
Generate Profile

Use gprof to analyze unaccelerated version of Jacobi solver
Investigate!

Task 1: Analyze Application

Re-load NVHPC compiler with module load NVHPC
Change to Task1/ directory
Compile: make task1
Usually, compile just with make (but this exercise is special)
Submit profiling run to the batch system: make task1_profile
Study srun call and pgprof call; try to understand

??? Where is hotspot? Which parts should be accelerated?

TASK 1

Member of the Helmholtz Association 27 October 2021 Slide 19 75

Identify Parallelism
Generate Profile

Use gprof to analyze unaccelerated version of Jacobi solver
Investigate!

Task 1: Analyze Application

Re-load NVHPC compiler with module load NVHPC
Change to Task1/ directory
Compile: make task1
Usually, compile just with make (but this exercise is special)
Submit profiling run to the batch system: make task1_profile
Study srun call and pgprof call; try to understand

??? Where is hotspot? Which parts should be accelerated?

TASK 1

Member of the Helmholtz Association 27 October 2021 Slide 19 75

Profile of Application

$ gcc -g -pg -DUSE_DOUBLE -c -o poisson2d_reference.o poisson2d_reference.c
$ gcc -g -pg -DUSE_DOUBLE -lm poisson2d_reference.o poisson2d.c -o poisson2d
$ gprof -p -l ./poisson2d gmon.out
Flat profile:
Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls Ts/call Ts/call name
46.29 1.28 1.28 main (poisson2d.c:107 @ 40135c)
30.01 2.11 0.83 main (poisson2d.c:108 @ 4013cd)
12.66 2.46 0.35 main (poisson2d.c:109 @ 401458)
6.15 2.63 0.17 main (poisson2d.c:107 @ 401421)

Very simple here: All in main
Lines 107, 108, 109: within the inner grid loop
Good position to start! Let’s study this further in independency analysis

Member of the Helmholtz Association 27 October 2021 Slide 20 75

Code Independency Analysis
Independence is key

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Data dependency
between iterations

Independent loop
iterations

Independent loop
iterations

Independent loop
iterations

Member of the Helmholtz Association 27 October 2021 Slide 21 75

Code Independency Analysis
Independence is key

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Data dependency
between iterations

Independent loop
iterations

Independent loop
iterations

Independent loop
iterations

Member of the Helmholtz Association 27 October 2021 Slide 21 75

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 27 October 2021 Slide 22 75

Parallel Loops: Parallel
An important directive

Programmer identifies block containing parallelism
→ compiler generates offload code
Program launch creates gangs of parallel threads on parallel device
Implicit barrier at end of parallel region
Each gang executes same code sequentially

C OpenACC: parallel

#pragma acc parallel [clause, [, clause] ...] newline
{structured block}

Member of the Helmholtz Association 27 October 2021 Slide 23 75

Parallel Loops: Parallel
An important directive

Programmer identifies block containing parallelism
→ compiler generates offload code
Program launch creates gangs of parallel threads on parallel device
Implicit barrier at end of parallel region
Each gang executes same code sequentially

F OpenACC: parallel

!$acc parallel [clause, [, clause] ...]
!$acc end parallel

Member of the Helmholtz Association 27 October 2021 Slide 23 75

Parallel Loops: Parallel
An important directive

Programmer identifies block containing parallelism
→ compiler generates offload code
Program launch creates gangs of parallel threads on parallel device
Implicit barrier at end of parallel region
Each gang executes same code sequentially

F OpenACC: parallel

!$acc parallel [clause, [, clause] ...]
!$acc end parallel

Member of the Helmholtz Association 27 October 2021 Slide 23 75

Parallel Loops: Parallel
Clauses

Diverse clauses to augment the parallel region
private(var) A copy of variables var is made for each gang

firstprivate(var) Same as private, except varwill initialized with value from host
if(cond) Parallel region will execute on accelerator only if cond is true

reduction(op:var) Reduction is performed on variable varwith operation op; supported:
+ * max min …

async[(int)] No implicit barrier at end of parallel region

Member of the Helmholtz Association 27 October 2021 Slide 24 75

Parallel Loops: Loops
Also an important directive

Programmer identifies loop eligible for parallelization
Directive must be directly before loop
Optional: Describe type of parallelism

C OpenACC: loop

#pragma acc loop [clause, [, clause] ...] newline
{structured block}

Member of the Helmholtz Association 27 October 2021 Slide 25 75

Parallel Loops: Loops
Also an important directive

Programmer identifies loop eligible for parallelization
Directive must be directly before loop
Optional: Describe type of parallelism

F OpenACC: loop

!$acc loop [clause, [, clause] ...]
!$acc end loop

Member of the Helmholtz Association 27 October 2021 Slide 25 75

Parallel Loops: Loops
Clauses

independent Iterations of loop are data-independent (implied if in parallel region
(and no seq or auto))

collapse(int) Collapse int tightly-nested loops
seq This loop is to be executed sequentially (not parallel)

tile(int[,int]) Split loops into loops over tiles of the full size
auto Compiler decides what to do

Member of the Helmholtz Association 27 October 2021 Slide 26 75

Parallel Loops: Parallel Loops
Maybe themost important directive

Combined directive: shortcut
Because its used so often
Any clause that is allowed on parallel or loop allowed
Restriction: May not appear in body of another parallel region

C OpenACC: parallel loop

#pragma acc parallel loop [clause, [, clause] ...] newline
{structured block}

Member of the Helmholtz Association 27 October 2021 Slide 27 75

Parallel Loops: Parallel Loops
Maybe themost important directive

Combined directive: shortcut
Because its used so often
Any clause that is allowed on parallel or loop allowed
Restriction: May not appear in body of another parallel region

F OpenACC: parallel loop

!$acc parallel loop [clause, [, clause] ...]
!$acc end parallel loop

Member of the Helmholtz Association 27 October 2021 Slide 27 75

Parallel Loops: Parallel Loops
Maybe themost important directive

Combined directive: shortcut
Because its used so often
Any clause that is allowed on parallel or loop allowed
Restriction: May not appear in body of another parallel region

 OpenACC: parallel loop

#pragma acc parallel loop [clause, [, clause] ...]

Member of the Helmholtz Association 27 October 2021 Slide 27 75

Parallel Loops Example

double sum = 0.0;
#pragma acc parallel loop
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}

#pragma acc parallel loop reduction(+:sum)
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
sum+=y[i];

}

sum = 0.0
!$acc parallel loop
do i = 1, N

x(i) = 1.0
y(i) = 2.0

end do
!$acc end parallel loop
!$acc parallel loop reduction(+:sum)
do i = 1, N

y(i) = i*x(i)+y(i)
sum+=y(i)

end do
!$acc end parallel loop

Member of the Helmholtz Association 27 October 2021 Slide 28 75

Parallel Loops Example

double sum = 0.0;
#pragma acc parallel loop
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}

#pragma acc parallel loop reduction(+:sum)
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
sum+=y[i];

}

sum = 0.0
!$acc parallel loop
do i = 1, N

x(i) = 1.0
y(i) = 2.0

end do
!$acc end parallel loop
!$acc parallel loop reduction(+:sum)
do i = 1, N

y(i) = i*x(i)+y(i)
sum+=y(i)

end do
!$acc end parallel loop

Kernel 1

Kernel 2

Member of the Helmholtz Association 27 October 2021 Slide 28 75

Parallel Jacobi
Add parallelism

Add OpenACC parallelism tomain double loop in
Jacobi solver source code

→ Congratulations, you are a GPU developer!

Task 2: A First Parallel Loop

Change to Task2/ directory
Compile: make
Submit parallel run to the batch system:
make run
Adapt the srun call and run with other
number of iterations, matrix sizes

Fortran
All tasks available in Fortran:
exercises/Fortran/Task2/
Fortranmuch faster than C
Slides follow C results
Fortran: No command line
options parsed

TASK 2

Member of the Helmholtz Association 27 October 2021 Slide 29 75

Parallel Jacobi
Source Code

110 #pragma acc parallel loop reduction(max:error)
111 for (int ix = ix_start; ix < ix_end; ix++)
112 {
113 for (int iy = iy_start; iy < iy_end; iy++)
114 {
115 Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -
116 (A[iy*nx+ix+1] + A[iy*nx+ix-1]
117 + A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));
118 error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
119 }
120 }

Member of the Helmholtz Association 27 October 2021 Slide 30 75

Parallel Jacobi
Compilation result

$ make
nvc -DUSE_DOUBLE -Minfo=accel -O1 -acc=gpu -gpu=managed poisson2d.c poisson2d_reference.o
-o poisson2d
poisson2d_reference.o -o poisson2d

poisson2d.c:
main:

106, Generating Tesla code
110, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

Generating reduction(max:error)
112, #pragma acc loop seq

106, Generating implicit copyin(A[:]) [if not already present]
Generating implicit copy(error) [if not already present]
Generating implicit copyin(rhs[:]) [if not already present]

112, Complex loop carried dependence of Anew-> prevents parallelization
Loop carried dependence of Anew-> prevents parallelization

Member of the Helmholtz Association 27 October 2021 Slide 31 75

Parallel Jacobi
Run result

$ make run
srun --gres=gpu:1 --time 0:10:00 --pty ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0.…

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0.…

2048x2048: Ref: 105.6753 s, This: 14.0692 s, speedup: 7.51

Member of the Helmholtz Association 27 October 2021 Slide 32 75

Nsight Systems
NVIDIA’s Application Profiler

Profiler for GPU applications
CLI and GUI (timeline view)
Sister tool: Nsight Compute (kernel profiler)
More: tomorrow in dedicated session

Member of the Helmholtz Association 27 October 2021 Slide 33 75

Profile of Jacobi
With nsys

$ make profile
srun --gres=gpu:1 --time 0:10:00 --pty nsys nvprof ./poisson2d 10

CUDA API Statistics:

Time(%) Total Time (ns) Num Calls Average Minimum Maximum Name
------- --------------- --------- ------------ ---------- ---------- --------------------

90.9 160,407,572 30 5,346,919.1 1,780 25,648,117 cuStreamSynchronize

CUDA Kernel Statistics:

Time(%) Total Time (ns) Instances Average Minimum Maximum Name
------- --------------- --------- ------------ ---------- ---------- -----------------
100.0 158,686,617 10 15,868,661.7 14,525,819 25,652,783 main_106_gpu
0.0 25,120 10 2,512.0 2,304 3,680 main_106_gpu__red

Profile of Jacobi
With nsys

$ make profile
srun --gres=gpu:1 --time 0:10:00 --pty nsys nvprof ./poisson2d 10

CUDA API Statistics:

Time(%) Total Time (ns) Num Calls Average Minimum Maximum Name
------- --------------- --------- ------------ ---------- ---------- --------------------

90.9 160,407,572 30 5,346,919.1 1,780 25,648,117 cuStreamSynchronize

CUDA Kernel Statistics:

Time(%) Total Time (ns) Instances Average Minimum Maximum Name
------- --------------- --------- ------------ ---------- ---------- -----------------
100.0 158,686,617 10 15,868,661.7 14,525,819 25,652,783 main_106_gpu
0.0 25,120 10 2,512.0 2,304 3,680 main_106_gpu__red

Only one fu
nction is pa

rallelized!

Let’s do the
rest!

More Parallelism: Kernels
More freedom for compiler

Kernels directive: second way to expose parallelism
Regionmay contain parallelism
Compiler determines parallelization opportunities

→ More freedom for compiler
Rest: Same as for parallel

 OpenACC: kernels

#pragma acc kernels [clause, [, clause] ...]

Member of the Helmholtz Association 27 October 2021 Slide 35 75

Kernels Example

double sum = 0.0;
#pragma acc kernels
{
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
sum+=y[i];

}
}

Kernels created here

Member of the Helmholtz Association 27 October 2021 Slide 36 75

kernels vs. parallel
Both approaches equally valid; can perform equally well

kernels
Compiler performs parallel analysis
Can cover large area of code with single directive
Gives compiler additional leeway

parallel
Requires parallel analysis by programmer
Will also parallelize what compiler maymiss
More explicit
Similar to OpenMP

Both regions may not contain other kernels/parallel regions
No braunching into or out
Programmust not depend on order of evaluation of clauses
At most: One if clause

Member of the Helmholtz Association 27 October 2021 Slide 37 75

kernels vs. parallel
Both approaches equally valid; can perform equally well
kernels

Compiler performs parallel analysis
Can cover large area of code with single directive
Gives compiler additional leeway

parallel
Requires parallel analysis by programmer
Will also parallelize what compiler maymiss
More explicit
Similar to OpenMP

Both regions may not contain other kernels/parallel regions
No braunching into or out
Programmust not depend on order of evaluation of clauses
At most: One if clause

Member of the Helmholtz Association 27 October 2021 Slide 37 75

kernels vs. parallel
Both approaches equally valid; can perform equally well
kernels

Compiler performs parallel analysis
Can cover large area of code with single directive
Gives compiler additional leeway

parallel
Requires parallel analysis by programmer
Will also parallelize what compiler maymiss
More explicit
Similar to OpenMP

Both regions may not contain other kernels/parallel regions
No braunching into or out
Programmust not depend on order of evaluation of clauses
At most: One if clause

Member of the Helmholtz Association 27 October 2021 Slide 37 75

Parallel Jacobi II
Addmore parallelism

Add OpenACC parallelism to other loops of while (L:123 – L:141)
Use either kernels or parallel
Do they perform equally well?

Task 3: More Parallel Loops

Change to Task3/ directory
Compile: make
Study the compiler output!
Submit parallel run to the batch system: make run

? What’s your speed-up?

TASK 3

Member of the Helmholtz Association 27 October 2021 Slide 38 75

Parallel Jacobi
Source Code

while (error > tol && iter < iter_max) {
error = 0.0;
#pragma acc parallel loop reduction(max:error)
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
#pragma acc parallel loop
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
#pragma acc parallel loop
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Member of the Helmholtz Association 27 October 2021 Slide 39 75

Parallel Jacobi II
Compilation result

$ make
nvc -c -DUSE_DOUBLE -Minfo=accel -O1 -acc=gpu -gpu=managed poisson2d_reference.c -o poisson2d_reference.o
nvc -DUSE_DOUBLE -Minfo=accel -O1 -acc=gpu -gpu=managed poisson2d.c poisson2d_reference.o -o poisson2d
poisson2d.c:
main:

106, Generating Tesla code
110, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

Generating reduction(max:error)
112, #pragma acc loop seq

106, ...
118, Generating Tesla code

123, #pragma acc loop gang /* blockIdx.x */
125, #pragma acc loop vector(128) /* threadIdx.x */

118, Generating implicit copyin(Anew[:]) [if not already present]
Generating implicit copyout(A[:]) [if not already present]

125, Loop is paral…

Member of the Helmholtz Association 27 October 2021 Slide 40 75

Parallel Jacobi II
Run result

$ make run
srun --gres=gpu:1 --time 0:10:00 --pty ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0.…

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0.…

2048x2048: Ref: 105.4636 s, This: 0.3448 s, speedup: 305.86

Member of the Helmholtz Association 27 October 2021 Slide 41 75

Parallel Jacobi II
Run result

$ make run
srun --gres=gpu:1 --time 0:10:00 --pty ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0.…

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0.…

2048x2048: Ref: 105.4636 s, This: 0.3448 s, speedup: 305.86

Done?!

Member of the Helmholtz Association 27 October 2021 Slide 41 75

OpenACC by Example
Data Transfers

Automatic Data Transfers

Up to now: We did not care about data transfers
Compiler and runtime care
Magic keyword: -gpu=managed
Only feature of (recent) NVIDIA GPUs!

Member of the Helmholtz Association 27 October 2021 Slide 43 75

CPU and GPUMemory
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

At the Beginning CPU and GPU memory very distinct, own addresses

CUDA 4.0 Unified Virtual Addressing: pointer from same address pool, but
data copy manual

CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at once
CUDA 8.0 Unified Memory (truly): Data copy by driver, page faults

on-demand initiate data migrations (Pascal)
Future Address Translation Service (POWER); Heterogeneous Memory

Management (Linux)

Member of the Helmholtz Association 27 October 2021 Slide 44 75

CPU and GPUMemory
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

Unified
Virtual

Addressing

At the Beginning CPU and GPU memory very distinct, own addresses
CUDA 4.0 Unified Virtual Addressing: pointer from same address pool, but

data copy manual

CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at once
CUDA 8.0 Unified Memory (truly): Data copy by driver, page faults

on-demand initiate data migrations (Pascal)
Future Address Translation Service (POWER); Heterogeneous Memory

Management (Linux)

Member of the Helmholtz Association 27 October 2021 Slide 44 75

CPU and GPUMemory
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

Unified
Memory

At the Beginning CPU and GPU memory very distinct, own addresses
CUDA 4.0 Unified Virtual Addressing: pointer from same address pool, but

data copy manual
CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at once

CUDA 8.0 Unified Memory (truly): Data copy by driver, page faults
on-demand initiate data migrations (Pascal)

Future Address Translation Service (POWER); Heterogeneous Memory
Management (Linux)

Member of the Helmholtz Association 27 October 2021 Slide 44 75

CPU and GPUMemory
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

Unified
Memory

At the Beginning CPU and GPU memory very distinct, own addresses
CUDA 4.0 Unified Virtual Addressing: pointer from same address pool, but

data copy manual
CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at once
CUDA 8.0 Unified Memory (truly): Data copy by driver, page faults

on-demand initiate data migrations (Pascal)

Future Address Translation Service (POWER); Heterogeneous Memory
Management (Linux)

Member of the Helmholtz Association 27 October 2021 Slide 44 75

CPU and GPUMemory
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

Unified
Memory

At the Beginning CPU and GPU memory very distinct, own addresses
CUDA 4.0 Unified Virtual Addressing: pointer from same address pool, but

data copy manual
CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at once
CUDA 8.0 Unified Memory (truly): Data copy by driver, page faults

on-demand initiate data migrations (Pascal)
Future Address Translation Service (POWER); Heterogeneous Memory

Management (Linux)

Member of the Helmholtz Association 27 October 2021 Slide 44 75

Portability
Managedmemory: Very productive feature
Manual transfers: Fine-grained control, possibly faster, portability

→ Code should also be fast without -gpu=managed!
Let’s remove it from compile flags!

$ make
nvc -c -DUSE_DOUBLE -Minfo=accel -O1 -acc=gpu poisson2d_reference.c -o
poisson2d_reference.o

nvc -DUSE_DOUBLE -Minfo=accel -O1 -acc=gpu poisson2d.c poisson2d_reference.o -o poisson2d
poisson2d.c:
NVC++-S-0155-Compiler failed to translate accelerator region (see -Minfo messages): Could
not find allocated-variable index for symbol - rhs (poisson2d.c: 106)

...
NVC++-F-0704-Compilation aborted due to previous errors. (poisson2d.c)
NVC++/x86-64 Linux 21.9-0: compilation aborted

Only C

Member of the Helmholtz Association 27 October 2021 Slide 45 75

Portability
Managedmemory: Very productive feature
Manual transfers: Fine-grained control, possibly faster, portability

→ Code should also be fast without -gpu=managed!
Let’s remove it from compile flags!

$ make
nvc -c -DUSE_DOUBLE -Minfo=accel -O1 -acc=gpu poisson2d_reference.c -o
poisson2d_reference.o

nvc -DUSE_DOUBLE -Minfo=accel -O1 -acc=gpu poisson2d.c poisson2d_reference.o -o poisson2d
poisson2d.c:
NVC++-S-0155-Compiler failed to translate accelerator region (see -Minfo messages): Could
not find allocated-variable index for symbol - rhs (poisson2d.c: 106)

...
NVC++-F-0704-Compilation aborted due to previous errors. (poisson2d.c)
NVC++/x86-64 Linux 21.9-0: compilation aborted

Only C

Member of the Helmholtz Association 27 October 2021 Slide 45 75

Copy Statements

Compiler implicitly created copy clauses to copy data to device

106, Generating implicit copyin(A[:],rhs[:]) [if not already present]
Generating implicit copy(error) [if not already present]

It couldn’t determine length of copied data…but before: no problem – Unified Memory!

Now: Problem! We need to give that information!
(Fortran: can often be determined by compiler)

Member of the Helmholtz Association 27 October 2021 Slide 46 75

Copy Statements

Compiler implicitly created copy clauses to copy data to device

106, Generating implicit copyin(A[:],rhs[:]) [if not already present]
Generating implicit copy(error) [if not already present]

It couldn’t determine length of copied data…but before: no problem – Unified Memory!
Now: Problem! We need to give that information!
(Fortran: can often be determined by compiler)

Member of the Helmholtz Association 27 October 2021 Slide 46 75

Copy Statements

Compiler implicitly created copy clauses to copy data to device

106, Generating implicit copyin(A[:],rhs[:]) [if not already present]
Generating implicit copy(error) [if not already present]

It couldn’t determine length of copied data…but before: no problem – Unified Memory!
Now: Problem! We need to give that information!
(Fortran: can often be determined by compiler)

C OpenACC: copy

#pragma acc parallel copy(A[start:length])
Also: copyin(B[s:l]) copyout(C[s:l]) present(D[s:l]) create(E[s:l])

Member of the Helmholtz Association 27 October 2021 Slide 46 75

Copy Statements

Compiler implicitly created copy clauses to copy data to device

106, Generating implicit copyin(A[:],rhs[:]) [if not already present]
Generating implicit copy(error) [if not already present]

It couldn’t determine length of copied data…but before: no problem – Unified Memory!
Now: Problem! We need to give that information!
(Fortran: can often be determined by compiler)

F OpenACC: copy

#pragma acc parallel copy(A(low:high))
Also: copyin(B(l:h) copyout(C(l:h) present(D(l:h) create(E(l:h)

Member of the Helmholtz Association 27 October 2021 Slide 46 75

Data Copies
Get that data!

Add copy clause to parallel regions

Task 4: Data Copies

Change to Task4/ directory
Work on TODOs
Compile: make
Submit parallel run to the batch system: make run

? What’s your speed-up?

TASK 4

Member of the Helmholtz Association 27 October 2021 Slide 47 75

Data Copies
Compiler Output

$ make
nvc -DUSE_DOUBLE -Minfo=accel -O1 -acc=gpu poisson2d.c poisson2d_reference.o -o poisson2d
poisson2d.c:
main:

106, Generating copy(A[:ny*nx],rhs[:ny*nx]) [if not already present]
Generating implicit copy(error) [if not already present]
Generating Tesla code

110, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
Generating reduction(max:error)

112, #pragma acc loop seq
106, Generating copy(Anew[:ny*nx]) [if not already present]
112, Complex loop carried dependence of Anew-> prevents parallelization

Loop carried dependence of Anew-> prevents parallelization
Loop carried backward dependence of Anew-> prevents vectorization

Member of the Helmholtz Association 27 October 2021 Slide 48 75

Data Copies
Run Result

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 89.8862 s, This: 22.8402 s, speedup: 3.94

Member of the Helmholtz Association 27 October 2021 Slide 49 75

Data Copies
Run Result

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 89.8862 s, This: 22.8402 s, speedup: 3.94

Slower?!
Why?

Member of the Helmholtz Association 27 October 2021 Slide 49 75

Nsight Systems

Let’s check again with profiler!
This time: GUI of Nsight Systems with timeline

Member of the Helmholtz Association 27 October 2021 Slide 50 75

Nsight Systems
Overview

Member of the Helmholtz Association 27 October 2021 Slide 51 75

Nsight Systems
Zoom to kernels

Member of the Helmholtz Association 27 October 2021 Slide 51 75

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 27 October 2021 Slide 52 75

Analyze Jacobi Data Flow
In code
while (error > tol && iter < iter_max) {

error = 0.0;

A, Anew resident on host

iter++
}

#pragma acc parallel loop

A, Anew resident on device
for (int ix = ix_start; ix < ix_end;

ix++) {→֒

for (int iy = iy_start; iy < iy_end;
iy++) {→֒

// ...
}}

Member of the Helmholtz Association 27 October 2021 Slide 53 75

Analyze Jacobi Data Flow
In code
while (error > tol && iter < iter_max) {

error = 0.0;

A, Anew resident on host

iter++
}

#pragma acc parallel loop

A, Anew resident on device
for (int ix = ix_start; ix < ix_end;

ix++) {→֒

for (int iy = iy_start; iy < iy_end;
iy++) {→֒

// ...
}}

copy

Member of the Helmholtz Association 27 October 2021 Slide 53 75

Analyze Jacobi Data Flow
In code
while (error > tol && iter < iter_max) {

error = 0.0;

A, Anew resident on host

iter++
}

#pragma acc parallel loop

A, Anew resident on device
for (int ix = ix_start; ix < ix_end;

ix++) {→֒

for (int iy = iy_start; iy < iy_end;
iy++) {→֒

// ...
}}

A, Anew resident on device

copy

Member of the Helmholtz Association 27 October 2021 Slide 53 75

Analyze Jacobi Data Flow
In code
while (error > tol && iter < iter_max) {

error = 0.0;

A, Anew resident on host

A, Anew resident on host

iter++
}

#pragma acc parallel loop

A, Anew resident on device
for (int ix = ix_start; ix < ix_end;

ix++) {→֒

for (int iy = iy_start; iy < iy_end;
iy++) {→֒

// ...
}}

A, Anew resident on device

copy

Member of the Helmholtz Association 27 October 2021 Slide 53 75

Analyze Jacobi Data Flow
In code
while (error > tol && iter < iter_max) {

error = 0.0;

A, Anew resident on host

A, Anew resident on host

iter++
}

#pragma acc parallel loop

A, Anew resident on device
for (int ix = ix_start; ix < ix_end;

ix++) {→֒

for (int iy = iy_start; iy < iy_end;
iy++) {→֒

// ...
}}

A, Anew resident on device

copy

Member of the Helmholtz Association 27 October 2021 Slide 53 75

Analyze Jacobi Data Flow
In code
while (error > tol && iter < iter_max) {

error = 0.0;

A, Anew resident on host

A, Anew resident on host

iter++
}

#pragma acc parallel loop

A, Anew resident on device
for (int ix = ix_start; ix < ix_end;

ix++) {→֒

for (int iy = iy_start; iy < iy_end;
iy++) {→֒

// ...
}}

A, Anew resident on device

copy

Copies are done
between each loop
and in each iteration!

Member of the Helmholtz Association 27 October 2021 Slide 53 75

Analyze Jacobi Data Flow
Summary

By now, whole algorithm is using GPU
At beginning of while loop, data copied to device; at end of loop, copied by to host
Depending on type of parallel regions in while loop: Data copied in between regions as
well

Slow! Data copies are expensive!

Member of the Helmholtz Association 27 October 2021 Slide 54 75

Analyze Jacobi Data Flow
Summary

By now, whole algorithm is using GPU
At beginning of while loop, data copied to device; at end of loop, copied by to host
Depending on type of parallel regions in while loop: Data copied in between regions as
well
Slow! Data copies are expensive!

Member of the Helmholtz Association 27 October 2021 Slide 54 75

Data Regions
Structured Data Regions

Defines region of code in which data remains on device
Data is shared among all kernels in region
Explicit data transfers

 OpenACC: data

#pragma acc data [clause, [, clause] ...]

Member of the Helmholtz Association 27 October 2021 Slide 55 75

Data Regions
Clauses

Clauses to augment the data regions
copy(var) Allocates memory of var on GPU, copies data to GPU at beginning of region,

copies data to host at end of region
Specifies size of var: var[lowerBound:size]

copyin(var) Allocates memory of var on GPU, copies data to GPU at beginning of region
copyout(var) Allocates memory of var on GPU, copies data to host at end of region
create(var) Allocates memory of var on GPU
present(var) Data of var is not copies automatically to GPU but considered present

Member of the Helmholtz Association 27 October 2021 Slide 56 75

Data Region Example

#pragma acc data copyout(y[0:N]) create(x[0:N])
{
double sum = 0.0;
#pragma acc parallel loop
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}

#pragma acc parallel loop
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
}
}

!$acc data copyout(y(1:N)) create(x(1,N))

sum = 0.0;
!$acc parallel loop
do i = 1, N

x(i) = 1.0
y(i) = 2.0

end do
!$acc end parallel loop
!$acc parallel loop
do i = 1, N

y(i) = i*x(i)+y(i)
end do
!$acc end parallel loop
!$acc end data

Member of the Helmholtz Association 27 October 2021 Slide 57 75

Data Regions II
Unstructured Data Regions

Define data regions, but not for structured block
Clauses executed at the very position the directive encountered
Closest to cudaMemcpy()
Still, explicit data transfers

 OpenACC: enter data

#pragma acc enter data [clause, [, clause] ...]
#pragma acc exit data [clause, [, clause] ...]

Member of the Helmholtz Association 27 October 2021 Slide 58 75

Data Region
More parallelism, Data locality

Add data regions such that all data resides on device during iterations

Task 5: Data Region

Change to Task5/ directory
Work on TODOs
Compile: make
Submit parallel run to the batch system: make run

? What’s your speed-up?

TASK 5

Member of the Helmholtz Association 27 October 2021 Slide 59 75

Parallel Jacobi II
Source Code

105 #pragma acc data copy(A[0:nx*ny]) copyin(rhs[0:nx*ny]) create(Anew[0:nx*ny])
106 while (error > tol && iter < iter_max)
107 {
108 error = 0.0;
109
110 // Jacobi kernel
111 #pragma acc parallel loop reduction(max:error)
112 for (int ix = ix_start; ix < ix_end; ix++)
113 {
114 for (int iy = iy_start; iy < iy_end; iy++)
115 {
116 Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] - (A[iy*nx+ix+1] + A[iy*nx+ix-1]
117 + A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));
118 error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
119 }
120 }
121
122 // A <-> Anew
123 #pragma acc parallel loop
124 for (int iy = iy_start; iy < iy_end; iy++)
125 // …
126 }

Member of the Helmholtz Association 27 October 2021 Slide 60 75

Data Region
Compiler Output

$ make
nvc -DUSE_DOUBLE -Minfo=accel -O1 -acc=gpu poisson2d.c poisson2d_reference.o -o poisson2d
poisson2d.c:
main:

105, Generating create(Anew[:ny*nx]) [if not already present]
Generating copy(A[:ny*nx]) [if not already present]
Generating copyin(rhs[:ny*nx]) [if not already present]

107, Generating Tesla code
111, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

Generating reduction(max:error)
113, #pragma acc loop seq
...

Member of the Helmholtz Association 27 October 2021 Slide 61 75

Data Region
Run Result

$ make run
srun --pty ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 94.3213 s, This: 0.3506 s, speedup: 269.05

C

Member of the Helmholtz Association 27 October 2021 Slide 62 75

Data Region
Run Result

$ make run
srun --pty ./poisson2d
Jacobi relaxation Calculation: 2048 x 2048 mesh
Calculate reference solution and time CPU execution.

0 0.250000
100 0.002396
200 0...

GPU execution.
0 0.250000

100 0.002396
200 0...

2048 x 2048: 1 GPU: 0.1570s, 1 CPU cores: 3.5955s, speedup: 22.90

Fortran

Nice!

Member of the Helmholtz Association 27 October 2021 Slide 62 75

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 27 October 2021 Slide 63 75

Loop Performance Optimization
Opportunities

$ make -B
nvc -DUSE_DOUBLE -Minfo=accel -O1 -acc=gpu poisson2d.c poisson2d_reference.o -o poisson2d
main:

113, Complex loop carried dependence of Anew-> prevents parallelization
Loop carried dependence of Anew-> prevents parallelization
Loop carried backward dependence of Anew-> prevents vectorization

119, Generating Tesla code
122, #pragma acc loop gang /* blockIdx.x */
124, #pragma acc loop vector(128) /* threadIdx.x */

To be discussed in other sessions!

Member of the Helmholtz Association 27 October 2021 Slide 64 75

OpenACC by Example
Routines

Accelerated Routines

Enable functions/sub-routines for acceleration
Make routine callable from device (CUDA: __device__)
Needed for refactoring, modular designs, …
Position

C At declaration and implementation; immediately beforeSee next slide

Fortran Within specification part sub-routine

 OpenACC: routine

#pragma acc routine (name) [clause, [, clause] ...]

Member of the Helmholtz Association 27 October 2021 Slide 66 75

Routine Details
Clauses to Directive
gang worker vector seq Type of parallelism used inside of routine

(name) Second version of directive
Make named routine accelerated
Applies to function within current scope with name name
To be inserted before definition of named function

bind(func) Bind routine to func device function
#pragma acc routine bind(func_dev)
void func(float *) {}
void func(float * A) {A[0] = 2;}
#pragma acc routine
void func_dev(float * A) {A[0] = 23;}
int main() {

float * A = (float*) malloc(1*sizeof(float));
func(A) // A[0] == 2
#pragma acc parallel
func(A) // A[0] == 23

}

Member of the Helmholtz Association 27 October 2021 Slide 67 75

Routine Details
Clauses to Directive
gang worker vector seq Type of parallelism used inside of routine

(name) Second version of directive
Make named routine accelerated
Applies to function within current scope with name name
To be inserted before definition of named function

bind(func) Bind routine to func device function
#pragma acc routine bind(func_dev)
void func(float *) {}
void func(float * A) {A[0] = 2;}
#pragma acc routine
void func_dev(float * A) {A[0] = 23;}
int main() {

float * A = (float*) malloc(1*sizeof(float));
func(A) // A[0] == 2
#pragma acc parallel
func(A) // A[0] == 23

}

Member of the Helmholtz Association 27 October 2021 Slide 67 75

Routine Details
Clauses to Directive
gang worker vector seq Type of parallelism used inside of routine

(name) Second version of directive
Make named routine accelerated
Applies to function within current scope with name name
To be inserted before definition of named function

bind(func) Bind routine to func device function
#pragma acc routine bind(func_dev)
void func(float *) {}
void func(float * A) {A[0] = 2;}
#pragma acc routine
void func_dev(float * A) {A[0] = 23;}
int main() {

float * A = (float*) malloc(1*sizeof(float));
func(A) // A[0] == 2
#pragma acc parallel
func(A) // A[0] == 23

}
Member of the Helmholtz Association 27 October 2021 Slide 67 75

Routine
Getting some routine!

Extract the inner part of the double for-loop into a dedicated routine called inner_loop()
C: error needs to be passed by reference!

Task 6: Routine

Change to Task6/ directory
Work on TODOs
Compile: make
Submit parallel run to the batch system: make run
Fortran: Why did it get slower?!

TASK 6

Member of the Helmholtz Association 27 October 2021 Slide 68 75

Jacobi Routine
Source Code

42 #pragma acc routine
43 void inner_loop(int ix, int nx, int iy_start, int iy_end, real * A, real * Anew, real * rhs,

real * error) {→֒

44 #pragma acc loop
45 for (int iy = iy_start; iy < iy_end; iy++)
46 {
47 Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] - (A[iy*nx+ix+1] + A[iy*nx+ix-1]
48 + A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));
49 *error = fmaxr(*error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
50 }
51 }

Member of the Helmholtz Association 27 October 2021 Slide 69 75

Jacobi Routine
Compiler Output

$ make
nvc -DUSE_DOUBLE -Minfo=accel -O1 -acc=gpu poisson2d.c poisson2d_reference.o -o poisson2d
poisson2d.c:
inner_loop:

43, Generating acc routine seq
Generating Tesla code

main:
121, Generating create(Anew[:ny*nx]) [if not already present]

...

Member of the Helmholtz Association 27 October 2021 Slide 70 75

Other Directives

Further Keywords
Directives

serial Serial GPU Region
wait Wait for any async operation

atomic Atomically access data (no
interference of concurrent
accesses)

cache Fetch data to GPU caches
declare Make data live on GPU for implicit

region directly after variable
declaration

update Update device data
shutdown Shutdown connection to GPU

Clauses
gang worker vector Type of

parallelism
collapse Combine tightly-nested

loops
tile Split loop into two loops

(first)private Create thread-private
data (and init)

attach Reference counting for data
pointers

async Schedule operation
asynchronously

Member of the Helmholtz Association 27 October 2021 Slide 72 75

Further Keywords
Directives

serial Serial GPU Region
wait Wait for any async operation

atomic Atomically access data (no
interference of concurrent
accesses)

cache Fetch data to GPU caches
declare Make data live on GPU for implicit

region directly after variable
declaration

update Update device data
shutdown Shutdown connection to GPU

Clauses
gang worker vector Type of

parallelism
collapse Combine tightly-nested

loops
tile Split loop into two loops

(first)private Create thread-private
data (and init)

attach Reference counting for data
pointers

async Schedule operation
asynchronously

Member of the Helmholtz Association 27 October 2021 Slide 72 75

Further Keywords
Directives

serial Serial GPU Region
wait Wait for any async operation

atomic Atomically access data (no
interference of concurrent
accesses)

cache Fetch data to GPU caches
declare Make data live on GPU for implicit

region directly after variable
declaration

update Update device data
shutdown Shutdown connection to GPU

Clauses
gang worker vector Type of

parallelism
collapse Combine tightly-nested

loops
tile Split loop into two loops

(first)private Create thread-private
data (and init)

attach Reference counting for data
pointers

async Schedule operation
asynchronously

Member of the Helmholtz Association 27 October 2021 Slide 72 75

Launch Configuration
Specify number of threads and blocks

3 clauses for changing distribution of group of
threads (clauses of parallel region (parallel,
kernels))
Presence of keyword: Distribute using this level
Optional size: Control size of parallel entity

Gang

$

Workers

Vector

 OpenACC: gang worker vector

#pragma acc parallel loop gang worker vector
Size: num_gangs(n), num_workers(n), vector_length(n)

Member of the Helmholtz Association 27 October 2021 Slide 73 75

Conclusions

Conclusions

OpenACC directives and clauses
#pragma acc parallel loop copyin(A[0:N]) reduction(max:err) vector
Start easy, optimize from there; express as much parallelism as possible
Optimize data for locality, prevent unnecessary movements
OpenACC is interoperable to other GPU programmingmodels

Member of the Helmholtz Association 27 October 2021 Slide 75 75

Conclusions

OpenACC directives and clauses
#pragma acc parallel loop copyin(A[0:N]) reduction(max:err) vector
Start easy, optimize from there; express as much parallelism as possible
Optimize data for locality, prevent unnecessary movements
OpenACC is interoperable to other GPU programmingmodels

Thank you

for your att
ention!

a.herten@fz-juelich.de

Member of the Helmholtz Association 27 October 2021 Slide 75 75

mailto:a.herten@fz-juelich.de

Appendix
List of Tasks
Glossary
References

Member of the Helmholtz Association 27 October 2021 Slide 1 7

List of Tasks

Task 1: Analyze Application
Task 2: A First Parallel Loop
Task 3: More Parallel Loops
Task 4: Data Copies
Task 5: Data Region
Task 6: Routine

Member of the Helmholtz Association 27 October 2021 Slide 2 7

Glossary I

AMD Manufacturer of CPUs and GPUs. 11, 12, 13, 14
Ampere GPU architecture from NVIDIA (announced 2019). 15

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 16, 69, 70, 71, 72, 73

GCC The GNU Compiler Collection, the collection of open source compilers, among
others for C and Fortran. 15, 30, 31

LLVM An open Source compiler infrastructure, providing, among others, Clang for C.
11, 12, 13, 14

NVHPC NVIDIA HPC SDK; Collection of GPU-capable compilers and libraries. Formerly
known as PGI.. 15

Member of the Helmholtz Association 27 October 2021 Slide 3 7

Glossary II

NVIDIA US technology company creating GPUs. 4, 11, 12, 13, 14, 54, 68, 125, 126, 127

OpenACC Directive-based programming, primarily for many-core machines. 2, 4, 5, 6, 7, 8,
9, 10, 15, 16, 17, 18, 19, 20, 29, 37, 38, 39, 40, 42, 43, 45, 46, 47, 50, 57, 62, 67, 78,
79, 87, 96, 99, 105, 107, 108, 119, 121, 122

OpenMP Directive-based programming, primarily for multi-threadedmachines. 2, 5, 6, 7,
11, 12, 13, 14, 59, 60, 61

PAPI The Performance API, a C/C++ API for querying performance counters. 30, 31
Pascal GPU architecture from NVIDIA (announced 2016). 69, 70, 71, 72, 73
perf Part of the Linux kernel which facilitates access to performance counters; comes

with command line utilities. 30, 31

Member of the Helmholtz Association 27 October 2021 Slide 4 7

Glossary III

PGI Compiler creators. Formerly The Portland Group, Inc.; since 2013 part of NVIDIA.
125

POWER CPU architecture from IBM, earlier: PowerPC. See also POWER8. 69, 70, 71, 72,
73, 127

POWER8 Version 8 of IBM’s POWER processor, available also within the OpenPOWER
Foundation. 127

CPU Central Processing Unit. 11, 12, 13, 14, 69, 70, 71, 72, 73, 125, 127

GPU Graphics Processing Unit. 2, 11, 12, 13, 14, 17, 50, 54, 68, 69, 70, 71, 72, 73, 94, 95,
97, 121, 122, 125, 126

Member of the Helmholtz Association 27 October 2021 Slide 5 7

References I

[3] Donald E. Knuth. “Structured Programming with Go to Statements.” In: ACM Comput.
Surv. 6.4 (Dec. 1974), pp. 261–301. ISSN: 0360-0300. DOI: 10.1145/356635.356640. URL:
http://doi.acm.org/10.1145/356635.356640 (pages 30, 31).

Member of the Helmholtz Association 27 October 2021 Slide 6 7

https://doi.org/10.1145/356635.356640
http://doi.acm.org/10.1145/356635.356640

References: Images, Graphics

[1] Bill Jelen. SpaceX Falcon Heavy Launch. Freely available at Unsplash. URL:
https://unsplash.com/photos/lDEMa5dPcNo.

[2] Setyo Ari Wibowo. Ask. URL: https://thenounproject.com/term/ask/1221810.

Member of the Helmholtz Association 27 October 2021 Slide 7 7

https://unsplash.com/photos/lDEMa5dPcNo
https://thenounproject.com/term/ask/1221810

	Outline
	OpenACC
	History
	openmp
	Modus Operandi
	*openacc's Models

	*openacc by Example
	*openacc Workflow
	Identify Parallelism
	Parallelize Loops
	Directive: Parallel
	Directive: Loops
	Profiling
	Directive: Kernels

	Data Transfers
	*gpu Memory Spaces
	Portability
	Clause: copy
	Nsight Systems

	Optimize Data Locality
	Analyse Flow
	Directive: data
	Directive: enter data

	Routines

	Other Directives
	Clause: gang worker vector

	Conclusions
	Appendix
	Appendix
	List of Tasks
	Glossary

	Glossary
	Acronyms
	References

	References
	References

