
Tools and Methods for Debugging OpenACC
JSC OpenACC Course 2021
Oct 2021 T. Hater Forschungszentrum Jülich

Member of the Helmholtz Association

Motivation
“It was on one of my journeys between the EDSAC room and the
punching equipment that ‘hesitating at the angles of stairs’ the re-
alization came over me with full force that a good part of the re-
mainder ofmy lifewasgoing tobe spent in finding errors inmyown
programs.”

Sir Maurice Wilkes

$> # Fast forward 70 years
$> ./spmv
call to cuStreamSynchronize returned error 700:

Illegal address during kernel execution

Member of the Helmholtz Association Oct 2021 Slide 1 29

Motivation
“It was on one of my journeys between the EDSAC room and the
punching equipment that ‘hesitating at the angles of stairs’ the re-
alization came over me with full force that a good part of the re-
mainder ofmy lifewasgoing tobe spent in finding errors inmyown
programs.”

Sir Maurice Wilkes

$> # Fast forward 70 years
$> ./spmv
call to cuStreamSynchronize returned error 700:

Illegal address during kernel execution

Member of the Helmholtz Association Oct 2021 Slide 1 29

An Attempt at Strategy

Before you break out the debugger, simplify the situation.
Re-produce with a simpler configuration, eg smaller input.

Use unit tests to verify your program in small chunks.
Heed the warnings your compiler reports and turn them on.
Use the version history (git bisect) to narrow the search space.

Member of the Helmholtz Association Oct 2021 Slide 2 29

An Attempt at Strategy

Before you break out the debugger, simplify the situation.
Re-produce with a simpler configuration, eg smaller input.
Use unit tests to verify your program in small chunks.

Heed the warnings your compiler reports and turn them on.
Use the version history (git bisect) to narrow the search space.

Member of the Helmholtz Association Oct 2021 Slide 2 29

An Attempt at Strategy

Before you break out the debugger, simplify the situation.
Re-produce with a simpler configuration, eg smaller input.
Use unit tests to verify your program in small chunks.
Heed the warnings your compiler reports and turn them on.

Use the version history (git bisect) to narrow the search space.

Member of the Helmholtz Association Oct 2021 Slide 2 29

An Attempt at Strategy

Before you break out the debugger, simplify the situation.
Re-produce with a simpler configuration, eg smaller input.
Use unit tests to verify your program in small chunks.
Heed the warnings your compiler reports and turn them on.
Use the version history (git bisect) to narrow the search space.

Member of the Helmholtz Association Oct 2021 Slide 2 29

An Attempt at Strategy

Locate the bug.
What is the error: illegal memory access, divide-by-zero, numerical…

In which kernel and statement is the error encountered?
Which execution trace lead to the error?
What are the values of local variables at the time of error?

Member of the Helmholtz Association Oct 2021 Slide 3 29

An Attempt at Strategy

Locate the bug.
What is the error: illegal memory access, divide-by-zero, numerical…
In which kernel and statement is the error encountered?

Which execution trace lead to the error?
What are the values of local variables at the time of error?

Member of the Helmholtz Association Oct 2021 Slide 3 29

An Attempt at Strategy

Locate the bug.
What is the error: illegal memory access, divide-by-zero, numerical…
In which kernel and statement is the error encountered?
Which execution trace lead to the error?

What are the values of local variables at the time of error?

Member of the Helmholtz Association Oct 2021 Slide 3 29

An Attempt at Strategy

Locate the bug.
What is the error: illegal memory access, divide-by-zero, numerical…
In which kernel and statement is the error encountered?
Which execution trace lead to the error?
What are the values of local variables at the time of error?

Member of the Helmholtz Association Oct 2021 Slide 3 29

General notes

Important flags for the nvc compiler
Building for debugging

-g CPU debug information; almost no overhead
-gpu=debug GPU debug information; significant overhead

-gpu=lineinfo correlate GPU assembly to source code; lightweight
Check compiler output: -Minfo=accel

When using NVIDIA’s nvcc compiler, eg for OpenACC/CUDA interop
-g: CPU-side debug info
-G: GPU-side debug info (expensive)
-lineinfo GPU-side light-weight info for profilers, but still helpful

Member of the Helmholtz Association Oct 2021 Slide 4 29

General notes

Important flags for the nvc compiler
Building for debugging

-g CPU debug information; almost no overhead
-gpu=debug GPU debug information; significant overhead

-gpu=lineinfo correlate GPU assembly to source code; lightweight
Check compiler output: -Minfo=accel

When using NVIDIA’s nvcc compiler, eg for OpenACC/CUDA interop
-g: CPU-side debug info
-G: GPU-side debug info (expensive)
-lineinfo GPU-side light-weight info for profilers, but still helpful

Member of the Helmholtz Association Oct 2021 Slide 4 29

Lightweight Tracing
Unravel the flow of kernels, might expose infinite loops and gives a coarse
approximation of the call stack.
In particular: What was the last kernel launch?
NV_ACC_TIME Lightweight profiler for time of data movement and kernels

NV_ACC_NOTIFY Print information for GPU-related events.

=1 …kernel launches only
=2 …data transfers only
=3 …kernel launches and data transfers
=4 … region entry/exits only
=5 … region entry/exits and kernel launches
=8 …wait operations, synchronizations
=16 … (de)allocation of device memory

Member of the Helmholtz Association Oct 2021 Slide 5 29

Lightweight Tracing
Unravel the flow of kernels, might expose infinite loops and gives a coarse
approximation of the call stack.
In particular: What was the last kernel launch?
NV_ACC_TIME Lightweight profiler for time of data movement and kernels

NV_ACC_NOTIFY Print information for GPU-related events.
=1 …kernel launches only
=2 …data transfers only
=3 …kernel launches and data transfers
=4 … region entry/exits only
=5 … region entry/exits and kernel launches
=8 …wait operations, synchronizations
=16 … (de)allocation of device memory

Member of the Helmholtz Association Oct 2021 Slide 5 29

Task 0 TASK
C

FORTRAN

Compile example with debug info.
Run the executable with tracing enabled.
Use different levels of tracing.
Which kernels are suspicious?

$> cd Debugging/tasks/{C,Fortran}/spmv/ # Choose language
$> make # Build
$> srun --partition=gpus --gres=gpu:1 --pty bash # Start shell
$> NV_ACC_NOTIFY=3 ./spmv.bin # Run program
$> exit # Leave shell

Member of the Helmholtz Association Oct 2021 Slide 6 29

Example

$> NV_ACC_NOTIFY=3 ./spmv.bin
upload CUDA data file=.../spmv.c
function=main line=36 device=0 threadid=1 variable=row_ptr bytes=15705192
upload CUDA data file=.../spmv.c
function=main line=36 device=0 threadid=1 variable=row_ptr bytes=16777216
[...]
launch CUDA kernel file=.../spmv.c
function=main line=42 device=0 threadid=1 num_gangs=65535 [...]
block=128 shared memory=1024
launch CUDA kernel file=.../spmv.c
function=main line=42 device=0 threadid=1 num_gangs=65535 [...]
block=128 shared memory=1024
[...]
download CUDA data file=.../spmv.c
function=main line=59 device=0 threadid=1 variable=y bytes=14633352
download CUDA data file=.../spmv.c
function=main line=59 device=0 threadid=1 variable=y bytes=16777152
[...]
Runtime 0.172498 s.

Member of the Helmholtz Association Oct 2021 Slide 7 29

compute-sanitizer
Command-line memory access analyzer

Amajority of bugs (and vulnerabilities) are related to memory access.
Memory error detector; similar to Valgrind’s memcheck
One of most helpful tools for error-finding.

Out-of-bounds accesses.
Kernels/API execution failures.
Memory leaks.
Use-after-free.

Has more sub-tools, via compute-sanitizer --tool NAME:

→ http://docs.nvidia.com/cuda/compute-sanitizer/

Member of the Helmholtz Association Oct 2021 Slide 8 29

http://valgrind.org/docs/manual/mc-manual.html
http://docs.nvidia.com/cuda/compute-sanitizer/

Task 1 TASK
C

FORTRAN

Get an interactive shell as before
Run the example with compute-sanitizer ./spmv
What do you think went wrong?
In which kernel and file/line is the error encountered?
What are the block and thread where the error happens?

Member of the Helmholtz Association Oct 2021 Slide 9 29

Example

$> compute-sanitizer ./spmv.bin
===== Invalid __global__ read of size 8
===== at 0x00000870 in .../spmv.c:50:main_42_gpu
===== by thread (26,0,0) in block (123,0,0)
===== Address 0x23aba45b60 is out of bounds
===== Saved host backtrace up to driver entry point at kernel launch time
===== Host Frame:/usr/lib64/nvidia/libcuda.so (cuLaunchKernel + 0x2c5) [0x204235]
[...]
===== Host Frame:./spmv.bin [0xe69]
=====
===== Invalid __global__ read of size 8
===== at 0x00000870 in .../spmv.c:50:main_42_gpu
===== by thread (25,0,0) in block (123,0,0)
===== Address 0x23aba45b58 is out of bounds
===== Saved host backtrace up to driver entry point at kernel launch time
===== Host Frame:/usr/lib64/nvidia/libcuda.so (cuLaunchKernel + 0x2c5) [0x204235]
[...]
===== Host Frame:./spmv.bin [0x192b]

Member of the Helmholtz Association Oct 2021 Slide 10 29

cuda-gdb
Symbolic debugger

Extension to GDB, a powerful symbolic debugger

Highly recommended to learn for all developers
https://www.gnu.org/software/gdb/documentation/
http://docs.nvidia.com/cuda/cuda-gdb/

This is the one sequence to remember, if nothing else.

$> cuda-gdb ./my-exe # The same works on pure CPU using plain gdb.
(gdb) set args arg0 arg1 ...
(gdb) run
... something terrible happens ...
(gdb) backtrace # Which function are we in, which functions called us.

Member of the Helmholtz Association Oct 2021 Slide 11 29

https://www.gnu.org/software/gdb/documentation/
http://docs.nvidia.com/cuda/cuda-gdb/

cuda-gdb
Symbolic debugger

Extension to GDB, a powerful symbolic debugger
Highly recommended to learn for all developers

https://www.gnu.org/software/gdb/documentation/
http://docs.nvidia.com/cuda/cuda-gdb/

This is the one sequence to remember, if nothing else.

$> cuda-gdb ./my-exe # The same works on pure CPU using plain gdb.
(gdb) set args arg0 arg1 ...
(gdb) run
... something terrible happens ...
(gdb) backtrace # Which function are we in, which functions called us.

Member of the Helmholtz Association Oct 2021 Slide 11 29

https://www.gnu.org/software/gdb/documentation/
http://docs.nvidia.com/cuda/cuda-gdb/

cuda-gdb
Symbolic debugger

Extension to GDB, a powerful symbolic debugger
Highly recommended to learn for all developers

→ https://www.gnu.org/software/gdb/documentation/

http://docs.nvidia.com/cuda/cuda-gdb/

This is the one sequence to remember, if nothing else.

$> cuda-gdb ./my-exe # The same works on pure CPU using plain gdb.
(gdb) set args arg0 arg1 ...
(gdb) run
... something terrible happens ...
(gdb) backtrace # Which function are we in, which functions called us.

Member of the Helmholtz Association Oct 2021 Slide 11 29

https://www.gnu.org/software/gdb/documentation/
http://docs.nvidia.com/cuda/cuda-gdb/

cuda-gdb
Symbolic debugger

Extension to GDB, a powerful symbolic debugger
Highly recommended to learn for all developers

→ https://www.gnu.org/software/gdb/documentation/
→ http://docs.nvidia.com/cuda/cuda-gdb/

This is the one sequence to remember, if nothing else.

$> cuda-gdb ./my-exe # The same works on pure CPU using plain gdb.
(gdb) set args arg0 arg1 ...
(gdb) run
... something terrible happens ...
(gdb) backtrace # Which function are we in, which functions called us.

Member of the Helmholtz Association Oct 2021 Slide 11 29

https://www.gnu.org/software/gdb/documentation/
http://docs.nvidia.com/cuda/cuda-gdb/

cuda-gdb
Symbolic debugger

Extension to GDB, a powerful symbolic debugger
Highly recommended to learn for all developers

→ https://www.gnu.org/software/gdb/documentation/
→ http://docs.nvidia.com/cuda/cuda-gdb/

This is the one sequence to remember, if nothing else.

$> cuda-gdb ./my-exe # The same works on pure CPU using plain gdb.
(gdb) set args arg0 arg1 ...
(gdb) run
... something terrible happens ...
(gdb) backtrace # Which function are we in, which functions called us.

Member of the Helmholtz Association Oct 2021 Slide 11 29

https://www.gnu.org/software/gdb/documentation/
http://docs.nvidia.com/cuda/cuda-gdb/

Task 2 TASK
C

FORTRAN

Obtain an interactive shell
Run the example under GDB cuda-gdb ./spmv
Try out the sequence shown above with the example.

Member of the Helmholtz Association Oct 2021 Slide 12 29

Recap so far

Nowwe have the following tools available to us to find
NV_ACC_NOTIFY lightweight trace of kernels.

compute-sanitizer location of erroneous memory accesses.
cuda-gdb sequence of calls leading to the error site.

In my experience, this is sufficient to weed out roughly 80% of all bugs.
For the remainder:

Stop execution at the entry into the misbehaving function.
Inspect function arguments. Check if one is the source of the error.
Yes: work through the back-trace to find the origin of the input.
No: step through the function until the error occurs.

Member of the Helmholtz Association Oct 2021 Slide 13 29

Recap so far

Nowwe have the following tools available to us to find
NV_ACC_NOTIFY lightweight trace of kernels.
compute-sanitizer location of erroneous memory accesses.

cuda-gdb sequence of calls leading to the error site.
In my experience, this is sufficient to weed out roughly 80% of all bugs.
For the remainder:

Stop execution at the entry into the misbehaving function.
Inspect function arguments. Check if one is the source of the error.
Yes: work through the back-trace to find the origin of the input.
No: step through the function until the error occurs.

Member of the Helmholtz Association Oct 2021 Slide 13 29

Recap so far

Nowwe have the following tools available to us to find
NV_ACC_NOTIFY lightweight trace of kernels.
compute-sanitizer location of erroneous memory accesses.
cuda-gdb sequence of calls leading to the error site.

In my experience, this is sufficient to weed out roughly 80% of all bugs.
For the remainder:

Stop execution at the entry into the misbehaving function.
Inspect function arguments. Check if one is the source of the error.
Yes: work through the back-trace to find the origin of the input.
No: step through the function until the error occurs.

Member of the Helmholtz Association Oct 2021 Slide 13 29

Recap so far

Nowwe have the following tools available to us to find
NV_ACC_NOTIFY lightweight trace of kernels.
compute-sanitizer location of erroneous memory accesses.
cuda-gdb sequence of calls leading to the error site.

In my experience, this is sufficient to weed out roughly 80% of all bugs.

For the remainder:

Stop execution at the entry into the misbehaving function.
Inspect function arguments. Check if one is the source of the error.
Yes: work through the back-trace to find the origin of the input.
No: step through the function until the error occurs.

Member of the Helmholtz Association Oct 2021 Slide 13 29

Recap so far

Nowwe have the following tools available to us to find
NV_ACC_NOTIFY lightweight trace of kernels.
compute-sanitizer location of erroneous memory accesses.
cuda-gdb sequence of calls leading to the error site.

In my experience, this is sufficient to weed out roughly 80% of all bugs.
For the remainder:

Stop execution at the entry into the misbehaving function.
Inspect function arguments. Check if one is the source of the error.
Yes: work through the back-trace to find the origin of the input.
No: step through the function until the error occurs.

Member of the Helmholtz Association Oct 2021 Slide 13 29

Recap so far

Nowwe have the following tools available to us to find
NV_ACC_NOTIFY lightweight trace of kernels.
compute-sanitizer location of erroneous memory accesses.
cuda-gdb sequence of calls leading to the error site.

In my experience, this is sufficient to weed out roughly 80% of all bugs.
For the remainder:

Stop execution at the entry into the misbehaving function.

Inspect function arguments. Check if one is the source of the error.
Yes: work through the back-trace to find the origin of the input.
No: step through the function until the error occurs.

Member of the Helmholtz Association Oct 2021 Slide 13 29

Recap so far

Nowwe have the following tools available to us to find
NV_ACC_NOTIFY lightweight trace of kernels.
compute-sanitizer location of erroneous memory accesses.
cuda-gdb sequence of calls leading to the error site.

In my experience, this is sufficient to weed out roughly 80% of all bugs.
For the remainder:

Stop execution at the entry into the misbehaving function.
Inspect function arguments. Check if one is the source of the error.

Yes: work through the back-trace to find the origin of the input.
No: step through the function until the error occurs.

Member of the Helmholtz Association Oct 2021 Slide 13 29

Recap so far

Nowwe have the following tools available to us to find
NV_ACC_NOTIFY lightweight trace of kernels.
compute-sanitizer location of erroneous memory accesses.
cuda-gdb sequence of calls leading to the error site.

In my experience, this is sufficient to weed out roughly 80% of all bugs.
For the remainder:

Stop execution at the entry into the misbehaving function.
Inspect function arguments. Check if one is the source of the error.
Yes: work through the back-trace to find the origin of the input.

No: step through the function until the error occurs.

Member of the Helmholtz Association Oct 2021 Slide 13 29

Recap so far

Nowwe have the following tools available to us to find
NV_ACC_NOTIFY lightweight trace of kernels.
compute-sanitizer location of erroneous memory accesses.
cuda-gdb sequence of calls leading to the error site.

In my experience, this is sufficient to weed out roughly 80% of all bugs.
For the remainder:

Stop execution at the entry into the misbehaving function.
Inspect function arguments. Check if one is the source of the error.
Yes: work through the back-trace to find the origin of the input.
No: step through the function until the error occurs.

Member of the Helmholtz Association Oct 2021 Slide 13 29

Breakpoints

Interrupt execution when a certain (source) location is reached.

(gdb) break foo # break at function/kernel/template
(gdb) break file:line # break at line

Member of the Helmholtz Association Oct 2021 Slide 14 29

Interlude: OpenACC and cuda-gdb

We are using CUDA tools with OpenACC.
This works, but requires some namemangling.
Pattern: function_line_gpu

C main_42_gpu
Fortran spmv_26_gpu
Recipe for extracting all kernel names

$> strings ./app `# Extract runs of >= 4 printable characters` \
| grep .*_gpu `# Filter out those ending on _gpu` \
| sort `# Sort and reduce to unique elements` \
| uniq

Member of the Helmholtz Association Oct 2021 Slide 15 29

At The Breakpoint

When execution is halted the program state can be inspected.

(gdb) backtrace # show stack of functions to here
(gdb) list # show source code context
(gdb) print bar # print value of variable
(gdb) print arr[0]@4 # print first 4 values in array

Member of the Helmholtz Association Oct 2021 Slide 16 29

Breakpoint ctd

When done, continue execution in steps or normally. Unused breakpoints
can be removed.

(gdb) continue # resume until next breakpoint (same if in loop)
(gdb) step # resume until next line (descend into calls)
(gdb) next # same, but do not follow calls
(gdb) delete <id> # remove breakpoint `id` returned by `break`

Member of the Helmholtz Association Oct 2021 Slide 17 29

Task 3 TASK
C

FORTRAN

Start the program using cuda-gdb.
Set a breakpoint at the broken kernel.
Try stepping through the kernel and inspect the local variables.

Member of the Helmholtz Association Oct 2021 Slide 18 29

Example

$> cuda-gdb ./spmv.bin
NVIDIA (R) CUDA Debugger
[...]
Reading symbols from .../spmv.bin...done.
(cuda-gdb) break main_42_gpu
Function "main_42_gpu" not defined.
Make breakpoint pending on future shared library load! (y or [n]) y
Breakpoint 1 (main_42_gpu) pending.
(cuda-gdb) run
Starting program: .../spmv.bin
[...]
[New Thread 0x2aab581ff700 (LWP 14126)]
[Switching focus to CUDA kernel 0, grid 1, block (0,0,0), thread (0,0,0), [...]]
Breakpoint 1, main_42_gpu<<<(65535,1,1),(128,1,1)>>> ([...]) at spmv.c:43
43 for (int row=0; row<num_rows; ++row)
(cuda-gdb) print x[0]@8
[...]
(cuda-gdb) continue

Member of the Helmholtz Association Oct 2021 Slide 19 29

GPU-specifics
Information

So far, most techniques have been general. Now, we start delving into the
specifics of cuda-gdb.
Remember the GPU execution model of

grids, blocks, threads (logically)
devices, SMs, warps, lanes (physically).

NB Check -Minfo=accel output.
You can retrieve extremely detailled information within cuda-gdb

(cuda-gdb) info cuda <item> # item = devices, sms, warps, lanes
(cuda-gdb) info cuda <item> # item = kernels, blocks, threads
(cuda-gdb) info cuda contexts # device contexts
(cuda-gdb) info cuda managed # managed variables
(cuda-gdb) info registers $R<n> # registers (no 'cuda' here!)

Member of the Helmholtz Association Oct 2021 Slide 20 29

GPU-specifics
Focus

cuda-gdb is working with a subset of threads called the ‘focus’.

(cuda-gdb) # Show current focus
(cuda-gdb) cuda device sm warp lane block thread
(cuda-gdb) # Change focus
(cuda-gdb) cuda device <d> sm <s> warp <w> lane <l> block thread

<t>→֒

(cuda-gdb) # in both cases, you can leave out items

Working with the focus is extremely helpful when only some threads
produce an error, eg out-of-bounds access.

Member of the Helmholtz Association Oct 2021 Slide 21 29

Task 4 TASK
C

FORTRAN

Observe the kernel run as before, but now switch the focus.
Try to find the set of threads where the error occurs.
Can you refine the hypothesis of what is wrong?

Member of the Helmholtz Association Oct 2021 Slide 22 29

Enhance Debugging for GPUs
Notify on Kernel Entry

Issue
I want to knowwhen a kernel starts or start debugging the first kernel
launched.

(cuda-gdb) set cuda kernel_events <value> # where <value> can be
(cuda-gdb) # none (default) no notifications
(cuda-gdb) # application directly launched kernels
(cuda-gdb) # system kernels launched by driver, eg memset
(cuda-gdb) # all any kernel launch
(cuda-gdb)
(cuda-gdb) # Set a breakpoint on first instruction of all kernels
(cuda-gdb) set cuda break_on_launch application

Member of the Helmholtz Association Oct 2021 Slide 23 29

Enhance Debugging for GPUs
Notify on Kernel Entry

Issue
I want to knowwhen a kernel starts or start debugging the first kernel
launched.

(cuda-gdb) set cuda kernel_events <value> # where <value> can be
(cuda-gdb) # none (default) no notifications
(cuda-gdb) # application directly launched kernels
(cuda-gdb) # system kernels launched by driver, eg memset
(cuda-gdb) # all any kernel launch
(cuda-gdb)
(cuda-gdb) # Set a breakpoint on first instruction of all kernels
(cuda-gdb) set cuda break_on_launch application

Member of the Helmholtz Association Oct 2021 Slide 23 29

Enhance Debugging for GPUs
Locating Launch and API Errors

Issue
Kernel and API errors may be reported asynchronously, due to the way
launching kernels works. This can be disabled for debugging, however, if
your bug is timing related, it might get hidden.
Similarly, cuda-gdb can check for memory errors.

(cuda-gdb) set cuda launch_blocking on # synchronous kernels
(cuda-gdb) set cuda api_failure stop # break at API errors
(cuda-gdb) set cuda memcheck on # check for violations
(cuda-gdb) # of segments and alignment. Implies blocking launches.

Member of the Helmholtz Association Oct 2021 Slide 24 29

Enhance Debugging for GPUs
Locating Launch and API Errors

Issue
Kernel and API errors may be reported asynchronously, due to the way
launching kernels works. This can be disabled for debugging, however, if
your bug is timing related, it might get hidden.
Similarly, cuda-gdb can check for memory errors.

(cuda-gdb) set cuda launch_blocking on # synchronous kernels
(cuda-gdb) set cuda api_failure stop # break at API errors
(cuda-gdb) set cuda memcheck on # check for violations
(cuda-gdb) # of segments and alignment. Implies blocking launches.

Member of the Helmholtz Association Oct 2021 Slide 24 29

Enhance Debugging for GPUs
Getting rid of optimized out

Issue
Printing some variables will only show an error. These have been spilled
and are not currently visible.
Some can still be printed by requesting the last known value.

(cuda-gdb) set cuda value_extrapolation on

Member of the Helmholtz Association Oct 2021 Slide 25 29

Enhance Debugging for GPUs
Getting rid of optimized out

Issue
Printing some variables will only show an error. These have been spilled
and are not currently visible.
Some can still be printed by requesting the last known value.

(cuda-gdb) set cuda value_extrapolation on

Member of the Helmholtz Association Oct 2021 Slide 25 29

Enhance Debugging for GPUs
Auto-stepping a Region

Issue
Errors will not be localised accurately if not single-stepping using step or
next. However, this is slow.

(cuda-gdb) set autostep <start> for <count> lines
(cuda-gdb) # every time line <start> is hit, the programm will be
(cuda-gdb) # single stepped for <count> lines.
(cuda-gdb) # Errors will report immediately.

Member of the Helmholtz Association Oct 2021 Slide 26 29

Enhance Debugging for GPUs
Auto-stepping a Region

Issue
Errors will not be localised accurately if not single-stepping using step or
next. However, this is slow.

(cuda-gdb) set autostep <start> for <count> lines
(cuda-gdb) # every time line <start> is hit, the programm will be
(cuda-gdb) # single stepped for <count> lines.
(cuda-gdb) # Errors will report immediately.

Member of the Helmholtz Association Oct 2021 Slide 26 29

Summary and Conclusion

Never use printf again for debugging.
Simplify before using a debugger.
Ask more complex questions about the location of the issue.
In general: All the CUDA tools work

compute-sanitizer
cuda-gdb

Some effort needed to translate, eg autogenerated kernels

Member of the Helmholtz Association Oct 2021 Slide 27 29

Summary and Conclusion

Never use printf again for debugging.
Simplify before using a debugger.
Ask more complex questions about the location of the issue.
In general: All the CUDA tools work

compute-sanitizer
cuda-gdb

Some effort needed to translate, eg autogenerated kernels

Happy d̷̢͚̮ ̰ ̙ ͉ ̟ ̳ ͎ ̮
฀̈̈ ̚ͅę̴ ̘ ̰ ͎ ̯ ̘ ̣
͌̊̾̀̿
͂̈̈́͑
̕ ͜͠͝ͅb̷̟ ̲ ͔ ̘ ̼ ̤ ̟ ̫ ̬ ̳ ͎ ̜

̀̓̔̏ ư̵̹ ̺͐̂̅̈
̒̇͌͆̏
̽
͘ ͜g̸̻ ̫ ̹ ̯ ̩ ̰ ̹ ̹
฀̦ ̝ ͚̽g̶ ͚̾̏
̎̆́̆ ͘ ǐ̸̗ͅ ͎ ̤ ͉ ̻ ̙
͠ͅn̴̯̉!

t.hater@fz-juelich.d
e

Member of the Helmholtz Association Oct 2021 Slide 27 29

mailto:t.hater@fz-juelich.de

Task 5 TASK
C

FORTRAN

Finally Armed with what you have learned so far, fix that bug.
See the next slides what spmv actually is supposed to do.

Member of the Helmholtz Association Oct 2021 Slide 28 29

The Running Example

Sparse Matrix-Vector Product (SpMV): x⃗ = A⃗y

CSR data layout

4 0 0 0 1 -2
3 0 0 1 -2 1
2 0 1 -2 1 0
1 1 -2 1 0 0
0 -2 1 0 0 0

0 1 2 3 4

1 -2
1 -2 1

1 -2 1
1 -2 1
-2 1

4
3
2
1
0

0 1 2 3 4

row_ptr

col_ptr

-2 1 1 -2 1 1 -2 1 1 -2 1 1 -2val

Member of the Helmholtz Association Oct 2021 Slide 29 29

The Running Example

Sparse Matrix-Vector Product (SpMV): x⃗ = A⃗y

CSR data layout

4 0 0 0 1 -2
3 0 0 1 -2 1
2 0 1 -2 1 0
1 1 -2 1 0 0
0 -2 1 0 0 0

0 1 2 3 4

1 -2
1 -2 1

1 -2 1
1 -2 1
-2 1

4
3
2
1
0

0 1 2 3 4

row_ptr

col_ptr

-2 1 1 -2 1 1 -2 1 1 -2 1 1 -2val

Member of the Helmholtz Association Oct 2021 Slide 29 29

The Running Example

Sparse Matrix-Vector Product (SpMV): x⃗ = A⃗y

CSR data layout 4 0 0 0 1 -2
3 0 0 1 -2 1
2 0 1 -2 1 0
1 1 -2 1 0 0
0 -2 1 0 0 0

0 1 2 3 4

1 -2
1 -2 1

1 -2 1
1 -2 1
-2 1

4
3
2
1
0

0 1 2 3 4

row_ptr

col_ptr

-2 1 1 -2 1 1 -2 1 1 -2 1 1 -2val

Member of the Helmholtz Association Oct 2021 Slide 29 29

The Running Example

Sparse Matrix-Vector Product (SpMV): x⃗ = A⃗y

CSR data layout 4 0 0 0 1 -2
3 0 0 1 -2 1
2 0 1 -2 1 0
1 1 -2 1 0 0
0 -2 1 0 0 0

0 1 2 3 4

1 -2
1 -2 1

1 -2 1
1 -2 1
-2 1

4
3
2
1
0

0 1 2 3 4

row_ptr

col_ptr

-2 1 1 -2 1 1 -2 1 1 -2 1 1 -2val

Member of the Helmholtz Association Oct 2021 Slide 29 29

The Running Example

Sparse Matrix-Vector Product (SpMV): x⃗ = A⃗y

CSR data layout 4 0 0 0 1 -2
3 0 0 1 -2 1
2 0 1 -2 1 0
1 1 -2 1 0 0
0 -2 1 0 0 0

0 1 2 3 4

1 -2
1 -2 1

1 -2 1
1 -2 1
-2 1

4
3
2
1
0

0 1 2 3 4

row_ptr

col_ptr

-2 1 1 -2 1 1 -2 1 1 -2 1 1 -2val

Member of the Helmholtz Association Oct 2021 Slide 29 29

The Running Example

Sparse Matrix-Vector Product (SpMV): x⃗ = A⃗y

CSR data layout 4 0 0 0 1 -2
3 0 0 1 -2 1
2 0 1 -2 1 0
1 1 -2 1 0 0
0 -2 1 0 0 0

0 1 2 3 4

1 -2
1 -2 1

1 -2 1
1 -2 1
-2 1

4
3
2
1
0

0 1 2 3 4

row_ptr

col_ptr

-2 1 1 -2 1 1 -2 1 1 -2 1 1 -2val

Member of the Helmholtz Association Oct 2021 Slide 29 29

The Running Example

Sparse Matrix-Vector Product (SpMV): x⃗ = A⃗y

CSR data layout 4 0 0 0 1 -2
3 0 0 1 -2 1
2 0 1 -2 1 0
1 1 -2 1 0 0
0 -2 1 0 0 0

0 1 2 3 4

1 -2
1 -2 1

1 -2 1
1 -2 1
-2 1

4
3
2
1
0

0 1 2 3 4

row_ptr

0 1 0 1 2 1 2 3 2 3 4 3 4col_ptr

-2 1 1 -2 1 1 -2 1 1 -2 1 1 -2val

Member of the Helmholtz Association Oct 2021 Slide 29 29

The Running Example

Sparse Matrix-Vector Product (SpMV): x⃗ = A⃗y

CSR data layout 4 0 0 0 1 -2
3 0 0 1 -2 1
2 0 1 -2 1 0
1 1 -2 1 0 0
0 -2 1 0 0 0

0 1 2 3 4

1 -2
1 -2 1

1 -2 1
1 -2 1
-2 1

4
3
2
1
0

0 1 2 3 4

0 2 5 8 11 13row_ptr

0 1 0 1 2 1 2 3 2 3 4 3 4col_ptr

-2 1 1 -2 1 1 -2 1 1 -2 1 1 -2val

Member of the Helmholtz Association Oct 2021 Slide 29 29

The Running Example

Sparse Matrix-Vector Product (SpMV): x⃗ = A⃗y

CSR data layout 4 0 0 0 1 -2
3 0 0 1 -2 1
2 0 1 -2 1 0
1 1 -2 1 0 0
0 -2 1 0 0 0

0 1 2 3 4

1 -2
1 -2 1

1 -2 1
1 -2 1
-2 1

4
3
2
1
0

0 1 2 3 4

0 2 5 8 11 13row_ptr

0 1 0 1 2 1 2 3 2 3 4 3 4col_ptr

-2 1 1 -2 1 1 -2 1 1 -2 1 1 -2val

Member of the Helmholtz Association Oct 2021 Slide 29 29

The Running Example

Sparse Matrix-Vector Product (SpMV): x⃗ = A⃗y

CSR data layout 4 0 0 0 1 -2
3 0 0 1 -2 1
2 0 1 -2 1 0
1 1 -2 1 0 0
0 -2 1 0 0 0

0 1 2 3 4

1 -2
1 -2 1

1 -2 1
1 -2 1
-2 1

4
3
2
1
0

0 1 2 3 4

0 2 5 8 11 13row_ptr

0 1 0 1 2 1 2 3 2 3 4 3 4col_ptr

-2 1 1 -2 1 1 -2 1 1 -2 1 1 -2val

Member of the Helmholtz Association Oct 2021 Slide 29 29

	Introduction
	Runtime Measurements

	NVIDIA Tools
	compute-sanitizer
	cuda-gdb

	Summary

