
OpenACC CUDA Interoperability
JSC OpenACC Course 2021
28 October 2021 Kaveh Haghighi Mood, Andreas Herten Forschungszentrum Jülich

Member of the Helmholtz Association

Contents
OpenACC is a team player!

OpenACC can interplay with
CUDA
GPU-enabled libraries and applications

Motivation
The Keyword
Tasks

Task 1
Task 2
Task 3
Task 4

Member of the Helmholtz Association 28 October 2021 Slide 1 26

Contents
OpenACC is a team player!

OpenACC can interplay with
CUDA
GPU-enabled libraries and applications

Motivation
The Keyword
Tasks

Task 1
Task 2
Task 3
Task 4

Member of the Helmholtz Association 28 October 2021 Slide 1 26

Motivation

Usually, three reasons for mixing OpenACC with others
1 Libraries!

A lot of hard problems have already been solved by others
→ Make use of this!

2 Existing environment
You build up on other’s work
Part of code is already ported (e.g. with CUDA), the rest should follow
OpenACC is a good first step in porting, CUDA a possible next

3 OpenACC coverage
Sometimes, OpenACC does not support specific part needed (very well)
Sometimes, more fine-grainedmanipulation needed

Member of the Helmholtz Association 28 October 2021 Slide 2 26

Motivation

Usually, three reasons for mixing OpenACC with others
1 Libraries!

A lot of hard problems have already been solved by others
→ Make use of this!

2 Existing environment
You build up on other’s work
Part of code is already ported (e.g. with CUDA), the rest should follow
OpenACC is a good first step in porting, CUDA a possible next

3 OpenACC coverage
Sometimes, OpenACC does not support specific part needed (very well)
Sometimes, more fine-grainedmanipulation needed

Member of the Helmholtz Association 28 October 2021 Slide 2 26

Motivation

Usually, three reasons for mixing OpenACC with others
1 Libraries!

A lot of hard problems have already been solved by others
→ Make use of this!

2 Existing environment
You build up on other’s work
Part of code is already ported (e.g. with CUDA), the rest should follow
OpenACC is a good first step in porting, CUDA a possible next

3 OpenACC coverage
Sometimes, OpenACC does not support specific part needed (very well)
Sometimes, more fine-grainedmanipulation needed

Member of the Helmholtz Association 28 October 2021 Slide 2 26

The Keyword
OpenACC’s Rosetta Stone

host_data use_device

Background
GPU and CPU are different devices, have different memory
Distinct address spaces

OpenACC hides handling of addresses from user
For every chunk of accelerated data, two addresses exist
One for CPU data, one for GPU data
OpenACC uses appropriate address in accelerated kernel

But: Automatic handling not working when out of OpenACC (OpenACC will default to host
address)
host_data use_device uses the address of the GPU device data for scope

Member of the Helmholtz Association 28 October 2021 Slide 3 26

The Keyword
OpenACC’s Rosetta Stone

host_data use_device
Background

GPU and CPU are different devices, have different memory
→ Distinct address spaces

OpenACC hides handling of addresses from user
For every chunk of accelerated data, two addresses exist
One for CPU data, one for GPU data
OpenACC uses appropriate address in accelerated kernel

But: Automatic handling not working when out of OpenACC (OpenACC will default to host
address)

→ host_data use_device uses the address of the GPU device data for scope

Member of the Helmholtz Association 28 October 2021 Slide 3 26

The host_data Construct
C

C

Usage:
double* foo = new double[N]; // foo on Host
#pragma acc data copyin(foo[0:N]) // foo on Device
{

...
#pragma acc host_data use_device(foo)
some_lfunc(foo); // Device: OK!
...

}

Directive can be used for structured block as well

Member of the Helmholtz Association 28 October 2021 Slide 4 26

The host_data Construct
Fortran

FORTRAN

Usage example
real(8) :: foo(N) ! foo on Host
!$acc data copyin(foo) ! foo on Device
...
!$acc host_data use_device(foo)
call some_func(foo); ! Device: OK!
!$acc end host_data
...

!$acc end data

Member of the Helmholtz Association 28 October 2021 Slide 4 26

The Inverse: deviceptr
When CUDA is involved

For the inverse case:
Data has been copied by CUDA or a CUDA-using library
Pointer to data residing on devices is returned

→ Use this data in OpenACC context
deviceptr clause declares data to be on device

Usage ():

Member of the Helmholtz Association 28 October 2021 Slide 5 26

The Inverse: deviceptr
When CUDA is involved

For the inverse case:
Data has been copied by CUDA or a CUDA-using library
Pointer to data residing on devices is returned

→ Use this data in OpenACC context
deviceptr clause declares data to be on device
Usage (C):
float * n;
int n = 4223;
cudaMalloc((void**)&x,(size_t)n*sizeof(float));
// ...
#pragma acc kernels deviceptr(x)
for (int i = 0; i < n; i++) {

x[i] = i;
}

C

Member of the Helmholtz Association 28 October 2021 Slide 5 26

The Inverse: deviceptr
When CUDA is involved

For the inverse case:
Data has been copied by CUDA or a CUDA-using library
Pointer to data residing on devices is returned

→ Use this data in OpenACC context
deviceptr clause declares data to be on device
Usage (Fortran):
integer, parameter :: n = 4223
real, device, dimension(N) :: x ! automatically on device
integer :: i
! ...
!$acc kernels deviceptr(x)
do i=1, n

x(i) = i
end do
!$acc end kernels

FORTRAN

Member of the Helmholtz Association 28 October 2021 Slide 5 26

Tasks

Member of the Helmholtz Association 28 October 2021 Slide 6 26

Subsection 1

Task 1

Member of the Helmholtz Association 28 October 2021 Slide 7 26

Task 1
Introduction to BLAS

Use case: Anything linear algebra
BLAS: Basic Linear Algebra Subprograms

Vector-vector, vector-matrix, matrix-matrix operations
Specification of routines
Examples: SAXPY, DGEMV, ZGEMM

→ http://www.netlib.org/blas/

cuBLAS: NVIDIA’s linear algebra routines with BLAS interface, readily accelerated
→ http://docs.nvidia.com/cuda/cublas/
Task 1: Use cuBLAS for vector addition, everything else with OpenACC

Member of the Helmholtz Association 28 October 2021 Slide 8 26

http://www.netlib.org/blas/
http://docs.nvidia.com/cuda/cublas/

Task 1
cuBLASOpenACC Interaction

cuBLAS routine used:
cublasDaxpy(cublasHandle_t handle, int n,

const double *alpha,
const double *x, int incx,
double *y, int incy)

handle capsules GPU auxiliary data, needs to be created and destroyed with
cublasCreate and cublasDestroy
x and y point to addresses on device!
cuBLAS library needs to be linked with -lcublas

Member of the Helmholtz Association 28 October 2021 Slide 9 26

Task 1
cuBLAS on Fortran

Nvidia offers bindings to cuBLAS out of the box
integer(4) function cublasdaxpy_v2(h, n, a, x, incx, y, incy)
type(cublasHandle) :: h
integer :: n
real(8) :: a
real(8), device, dimension(*) :: x, y
integer :: incx, incy
Usage: use cublas in code; add -Mcuda -Lcublas during compilation
Notes

Legacy (v1) cuBLAS bindings (no handle) also available, i.e. cublasdaxpy()
nvfortran allows to omit host_data use_device, but not recommended
Module openacc_cublas exists, specifically designed for usage with OpenACC (no need for host_data
use_device)

⇒ Both not part of training
→ https://docs.nvidia.com/hpc-sdk/compilers/pdf/hpc209cudaint.pdf

FORTRAN

Member of the Helmholtz Association 28 October 2021 Slide 10 26

https://docs.nvidia.com/hpc-sdk/compilers/pdf/hpc209cudaint.pdf

Task 1
Vector Addition with cuBLAS

Use cuBLAS for vector addition

Task 1: OpenACC+cuBLAS

Location of code:
5-Interoperability/Tasks/{C,Fortran}/Tasks/Task1
Work on TODOs in vecAddRed.{c,F03}

Use host_data use_device to provide correct pointer
Check cuBLAS documentation for details on cublasDaxpy()

Compile: make
Submit to the batch system: make run

TASK
C

FORTRAN

Member of the Helmholtz Association 28 October 2021 Slide 11 26

http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-axpy

Subsection 2

Task 2

Member of the Helmholtz Association 28 October 2021 Slide 12 26

Task 2
CUDA Need-to-Know

Use case:
Working on legacy code
Need the raw power (/flexibility) of CUDA

CUDA need-to-knows:
Thread→ Block→ Grid
Total number of threads should map to your problem; threads are alway given per block
A kernel is called from every thread on GPU device
Number of kernel threads: triple chevron syntax
kernel<<<nBlocks, nThreads>>>(arg1, arg2, ...)
Kernel: Function with __global__ prefix
Aware of its index by global variables, e.g. threadIdx.x

→ http://docs.nvidia.com/cuda/

Member of the Helmholtz Association 28 October 2021 Slide 13 26

http://docs.nvidia.com/cuda/

Task 2
Vector Addition with CUDA Kernel: C

CUDA kernel for vector addition, rest OpenACC

Marrying CUDA C and OpenACC:

No need to use wrappers! OpenACC and CUDA directly supported by nvc++

Task 2: OpenACC+CUDA

Change to 5-Interoperability/Tasks/C/Tasks/Task2 directory
Work on TODOs in vecAddRed.c

Use host_data use_device to provide correct pointer
Implement computation in kernel, implement call of kernel

Compile: make; Submit to the batch system: make run

TASK
C

Member of the Helmholtz Association 28 October 2021 Slide 14 26

Task 2
Vector Addition with CUDA Kernel: Fortran

CUDA kernel for vector addition, rest OpenACC

Marrying CUDA Fortran and OpenACC:

No need to use wrappers! OpenACC and CUDA Fortran directly supported in same source

Having a dedicatedmodule file could make sense anyway
Task 2: OpenACC+CUDA

Change to 5-Interoperability/Tasks/Fortran/Tasks/Task2
directory
Work on TODOs in vecAddRed.F03

Use host_data use_device to provide correct pointer
Implement computation in kernel, implement call of kernel

Compile: make; Submit to the batch system: make run

TASK
FORTRAN

Member of the Helmholtz Association 28 October 2021 Slide 14 26

Subsection 3

Task 3

Member of the Helmholtz Association 28 October 2021 Slide 15 26

Thrust
Iterators! Iterators everywhere!

Thrust
CUDA =

STL
C++

Template library
Based on iterators, but also works with plain C
Data-parallel primitives (scan(), sort(), reduce(), …); algorithms

→ http://thrust.github.io/
http://docs.nvidia.com/cuda/thrust/

Member of the Helmholtz Association 28 October 2021 Slide 16 26

http://thrust.github.io/
http://docs.nvidia.com/cuda/thrust/

Thrust
Code example

int a = 42;
int n = 10;
thrust::host_vector<float> x(n), y(n);
// fill x, y

thrust::device_vector d_x = x, d_y = y;

using namespace thrust::placeholders;
thrust::transform(d_x.begin(), d_x.end(), d_y.begin(), d_y.begin(), a * _1 + _2);

x = d_x;

Member of the Helmholtz Association 28 October 2021 Slide 17 26

Task 3
Vector Addition with Thrust: C

Use Thrust for reduction, everything else of vector addition with OpenACC

Thrust used via ISO_C_BINDING (onemore wrapper)

Task 3: OpenACC+Thrust

Change to directory 5-Interoperability/Tasks/C/Tasks/Task3
Work on TODOs in vecAddRed.c

Use host_data use_device to provide correct pointer
Implement call to thrust::reduce using c_ptr

Compile: make
Submit to the batch system: make run

TASK
C

Member of the Helmholtz Association 28 October 2021 Slide 18 26

Task 3
Vector Addition with Thrust: Fortran

Use Thrust for reduction, everything else of vector addition with OpenACC
Thrust used via ISO_C_BINDING (onemore wrapper)

Task 3: OpenACC+Thrust

Change to directory
5-Interoperability/Tasks/Fortran/Tasks/Task3
Work on TODOs in vecAddRed.F03, thrustWrapper.cu and
fortranthrust.F03

Familiarize yourself with setup of Thrust called via ISO_C_BINDING
Use host_data use_device to provide correct pointer
Implement call to thrust::reduce using c_ptr

Compile: make
Submit to the batch system: make run

TASK
FORTRAN

Member of the Helmholtz Association 28 October 2021 Slide 18 26

Subsection 4

Task 4

Member of the Helmholtz Association 28 October 2021 Slide 19 26

Task 4
Stating the Problem

Wewant to solve the Poisson equation

ΔΦ(x, y) = −ρ(x, y)

with periodic boundary conditions in x and y
Needed, e.g., for finding electrostatic potential Φ for a given charge distribution ρ
Model problem

ρ(x, y) = cos(4πx) sin(2πy)
(x, y) ∈ [0, 1)2

Analytically known: Φ(x, y) = Φ0 cos(4πx) sin(2πy)
Let’s solve the Poisson equation with a Fourier Transform!

Member of the Helmholtz Association 28 October 2021 Slide 20 26

Task 4
Introduction to Fourier Transforms

Discrete Fourier Transform and Re-Transform:

f̂k =
N−1
∑

j=0

fje−
2πik
N j

⇔ fj =
N−1
∑

k=0

f̂ke
2πij
N k

Time for all f̂k: O(N2)

Fast Fourier Transform: Recursively splitting→O(N log(N))
Find derivatives in Fourier space:

fj′ =
N−1
∑

k=0

ikf̂ke
2πij
N k

It’s just multiplying by ik!

Member of the Helmholtz Association 28 October 2021 Slide 21 26

Task 4
Plan for FFT Poisson Solution

Start with charge density ρ
1 Fourier-transform ρ

ρ̂← F (ρ)
2 Integrate ρ in Fourier space twice

φ̂← −ρ̂/
(

k2x + k2y
)

3 Inverse Fourier-transform φ̂
φ← F−1(φ̂)

cuFFT

OpenACC

cuFFT

Member of the Helmholtz Association 28 October 2021 Slide 22 26

Task 4
Plan for FFT Poisson Solution

Start with charge density ρ
1 Fourier-transform ρ

ρ̂← F (ρ)
2 Integrate ρ in Fourier space twice

φ̂← −ρ̂/
(

k2x + k2y
)

3 Inverse Fourier-transform φ̂
φ← F−1(φ̂)

cuFFT

OpenACC

cuFFT

Member of the Helmholtz Association 28 October 2021 Slide 22 26

Task 4
cuFFT: C

cuFFT: NVIDIA’s (Fast) Fourier Transform library
1D, 2D, 3D transforms; complex and real data types
Asynchronous execution
Modeled after FFTW library (API)
Part of CUDA Toolkit
Fortran: NVIDIA offers bindings with use cufft

→ https://developer.nvidia.com/cufft
cufftDoubleComplex *src, *tgt; // Device data!
cufftHandle plan;
// Setup 2d complex-complex trafo w/ dimensions (Nx, Ny)
cufftCreatePlan(plan, Nx, Ny, CUFFT_Z2Z);
cufftExecZ2Z(plan, src, tgt, CUFFT_FORWARD); // FFT
cufftExecZ2Z(plan, tgt, tgt, CUFFT_INVERSE); // iFFT
// Inplace trafo ^----^
cufftDestroy(plan); // Clean-up

C

Member of the Helmholtz Association 28 October 2021 Slide 23 26

https://developer.nvidia.com/cufft

Task 4
cuFFT: Fortran

cuFFT: NVIDIA’s (Fast) Fourier Transform library
1D, 2D, 3D transforms; complex and real data types
Asynchronous execution
Modeled after FFTW library (API)
Part of CUDA Toolkit
Fortran: NVIDIA offers bindings with use cufft

→ https://developer.nvidia.com/cufft
double complex, allocatable :: src(:,:), tgt(:,:) ! Device
integer :: plan, ierr
! Setup 2d complex-complex trafo w/ dimensions (Nx, Ny)
ierr = cufftCreatePlan(plan, Nx, Ny, CUFFT_Z2Z)
ierr = cufftExecZ2Z(plan, src, tgt, CUFFT_FORWARD) ! FFT
ierr = cufftExecZ2Z(plan, tgt, tgt, CUFFT_INVERSE) ! iFFT
! Inplace trafo ^----^
ierr = cufftDestroy(plan) ! Clean-up

FORTRAN

Member of the Helmholtz Association 28 October 2021 Slide 23 26

https://developer.nvidia.com/cufft

Task 4
Synchronizing cuFFT: C

CUDA Streams enable interleaving of computational tasks
cuFFT uses streams for asynchronous execution
cuFFT runs in default CUDA stream;
OpenACC does not→ trouble

⇒ Force cuFFT on OpenACC stream
#include <openacc.h>
// Obtain the OpenACC default stream id
cudaStream_t accStream = (cudaStream_t) acc_get_cuda_stream(acc_async_sync);
// Execute all cufft calls on this stream
cufftSetStream(accStream);

C

Member of the Helmholtz Association 28 October 2021 Slide 24 26

Task 4
Synchronizing cuFFT: Fortran

CUDA Streams enable interleaving of computational tasks
cuFFT uses streams for asynchronous execution
cuFFT runs in default CUDA stream;
OpenACC does not→ trouble

⇒ Force cuFFT on OpenACC stream
use openacc
integer :: stream
! Obtain the OpenACC default stream id
stream = acc_get_cuda_stream(acc_async_sync)
! Execute all cufft calls on this stream
ierr = cufftSetStream(plan, stream)

FORTRAN

Member of the Helmholtz Association 28 October 2021 Slide 24 26

Task 4
OpenACC and cuFFT

Use case: Fourier transforms
Use cuFFT and OpenACC to solve Poisson’s Equation

Task 4: OpenACC+cuFFT

Change to Interoperability/Tasks/{C,Fortran}/Tasks/Task4
directory
Work on TODOs in poisson.{c,F03}
solveRSpace Force cuFFT on correct stream; implement data handling with

host_data use_device
solveKSpace Implement data handling and parallelism
Compile: make
Submit to the batch system: make run

TASK
C

FORTRAN

Member of the Helmholtz Association 28 October 2021 Slide 25 26

Summary & Conclusion

If needed, OpenACC can play teamwith
GPU-accelerated libraries
Plain CUDA code

For Fortran, ISO_C_BINDINGmight be needed

Member of the Helmholtz Association 28 October 2021 Slide 26 26

Summary & Conclusion

If needed, OpenACC can play teamwith
GPU-accelerated libraries
Plain CUDA code

For Fortran, ISO_C_BINDINGmight be needed

Thank you

for your att
ention!

Member of the Helmholtz Association 28 October 2021 Slide 26 26

Appendix
Glossary
References

Member of the Helmholtz Association 28 October 2021 Slide 1 4

List of Tasks

Task 1: OpenACC+cuBLAS
Task 2: OpenACC+CUDA
Task 3: OpenACC+Thrust
Task 4: OpenACC+cuFFT

Member of the Helmholtz Association 28 October 2021 Slide 2 4

Glossary I

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 2, 3, 4, 5, 6, 11, 12, 13, 21, 22, 23, 34, 35, 36, 37, 39, 40, 42

NVIDIA US technology company creating GPUs. 16, 34, 35, 43

OpenACC Directive-based programming, primarily for many-core machines. 1, 2, 3, 4, 5, 6,
7, 8, 11, 12, 13, 16, 17, 18, 19, 22, 23, 27, 28, 32, 33, 36, 37, 38, 39, 40, 42

Thrust A parallel algorithms library for (among others) GPUs. See
https://thrust.github.io/. 25, 26, 27, 28, 42

Member of the Helmholtz Association 28 October 2021 Slide 3 4

https://thrust.github.io/

References: Images, Graphics I

[1] Chester Alvarez. Untitled. Freely available at Unsplash. URL:
https://unsplash.com/photos/bphc6kyobMg.

Member of the Helmholtz Association 28 October 2021 Slide 4 4

https://unsplash.com/photos/bphc6kyobMg

	Outline
	Motivation
	The Keyword
	Tasks
	Task 1
	Task 2
	Task 3
	Task 4

	Summary
	Appendix
	Appendix
	Glossary

	Glossary
	References

	References

