Hauptseite > Publikationsdatenbank > The Impact of Lithium Tungstate on the Densification and Conductivity of Phosphate Lithium Ion Conductors > print |
001 | 902550 | ||
005 | 20240711085645.0 | ||
024 | 7 | _ | |a 10.1002/celc.202101366 |2 doi |
024 | 7 | _ | |a 2128/30812 |2 Handle |
024 | 7 | _ | |a altmetric:118182039 |2 altmetric |
024 | 7 | _ | |a WOS:000733391400001 |2 WOS |
037 | _ | _ | |a FZJ-2021-04351 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Odenwald, Philipp |0 P:(DE-Juel1)177015 |b 0 |u fzj |
245 | _ | _ | |a The Impact of Lithium Tungstate on the Densification and Conductivity of Phosphate Lithium Ion Conductors |
260 | _ | _ | |a Weinheim |c 2022 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1648202086_11959 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Phosphate lithium ion conductors are outstanding electrolyte materials for solid-state lithium batteries. As polycrystalline ceramics, they have to be sintered at high temperatures. Lithium tungstate Li 2 WO 4 (LWO) is reported for the first time as an effective sintering aid to reduce the sintering temperature for one of the most common solid-state lithium ion conductors, Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 (LATP). While densification of LATP without sintering aids requires temperatures of at least 950°C to obtain a relative density of 90%, here relative densities of 90-95% are achieved even at 775°C when 5 wt.% of LWO is added. At 800°C the LATP containing 5 - 7 wt.% LWO densifies to a relative density of 97.2%. The ionic conductivity of LWO containing LATP is generally higher than that of pure LATP sintered at the same temperature. LATP containing 7 wt.% LWO shows high ionic conductivity of 4.4 × 10 -4 S/cm after sintering at 825°C. A significant reduction in sintering temperature, an increase in density and in the ionic conductivity of LATP as well as its non toxicity render LWO a very promising sintering aid for the development of LATP-based solid state batteries. |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
536 | _ | _ | |a 1222 - Components and Cells (POF4-122) |0 G:(DE-HGF)POF4-1222 |c POF4-122 |f POF IV |x 1 |
536 | _ | _ | |a FestBatt-Oxide - Materialplattform 'Oxide' im Rahmen des Kompetenzclusters für Festkörperbatterien (13XP0173A) |0 G:(BMBF)13XP0173A |c 13XP0173A |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Ma, Qianli |0 P:(DE-Juel1)129628 |b 1 |u fzj |
700 | 1 | _ | |a Davaasuren, Bambar |0 P:(DE-Juel1)174080 |b 2 |
700 | 1 | _ | |a Dashjav, Enkhtsetseg |0 P:(DE-Juel1)156509 |b 3 |u fzj |
700 | 1 | _ | |a Tietz, Frank |0 P:(DE-Juel1)129667 |b 4 |u fzj |
700 | 1 | _ | |a Wolff, Michael |0 P:(DE-Juel1)174436 |b 5 |u fzj |
700 | 1 | _ | |a Rheinheimer, Wolfgang |0 P:(DE-Juel1)185039 |b 6 |u fzj |
700 | 1 | _ | |a Uhlenbruck, Sven |0 P:(DE-Juel1)129580 |b 7 |u fzj |
700 | 1 | _ | |a Guillon, Olivier |0 P:(DE-Juel1)161591 |b 8 |u fzj |
700 | 1 | _ | |a Fattakhova-Rohlfing, Dina |0 P:(DE-Juel1)171780 |b 9 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1002/celc.202101366 |g p. celc.202101366 |0 PERI:(DE-600)2724978-5 |n 5 |p e202101366 |t ChemElectroChem |v 9 |y 2022 |x 2196-0216 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/902550/files/ChemElectroChem%20-%202021%20-%20Odenwald%20-%20The%20Impact%20of%20Lithium%20Tungstate%20on%20the%20Densification%20and%20Conductivity%20of%20Phosphate.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:902550 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |q OpenAPC |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)177015 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129628 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)156509 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129667 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)174436 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)185039 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)129580 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)161591 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)171780 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1222 |x 1 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-01-27 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CHEMELECTROCHEM : 2021 |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-17 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-17 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DEAL: Wiley 2019 |2 APC |0 PC:(DE-HGF)0120 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|