000902553 001__ 902553 000902553 005__ 20211119141839.0 000902553 0247_ $$2doi$$a10.23919/MIPRO52101.2021.9596796 000902553 0247_ $$2Handle$$a2128/29060 000902553 037__ $$aFZJ-2021-04354 000902553 1001_ $$0P:(DE-Juel1)178934$$aBarakat, Chadi$$b0$$eCorresponding author$$ufzj 000902553 1112_ $$a2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO)$$cOpatija$$d2021-09-27 - 2021-10-01$$wCroatia 000902553 245__ $$aDesign and Evaluation of an HPC-based Expert System to speed-up Retail Data Analysis using Residual Networks Combined with Parallel Association Rule Mining and Scalable Recommenders 000902553 260__ $$c2021 000902553 300__ $$a274 - 279 000902553 3367_ $$2ORCID$$aCONFERENCE_PAPER 000902553 3367_ $$033$$2EndNote$$aConference Paper 000902553 3367_ $$2BibTeX$$aINPROCEEDINGS 000902553 3367_ $$2DRIVER$$aconferenceObject 000902553 3367_ $$2DataCite$$aOutput Types/Conference Paper 000902553 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1637314506_24320 000902553 520__ $$aGiven the Covid-19 pandemic, the retail industry shifts many business models to enable more online purchases that produce large transaction data quantities (i.e., big data). Data science methods infer seasonal trends about products from this data and spikes in purchases, the effectiveness of advertising campaigns, or brand loyalty but require extensive processing power leveraging High-Performance Computing to deal with large transaction datasets. This paper proposes an High-Performance Computing-based expert system architectural design tailored for ‘big data analysis’ in the retail industry, providing data science methods and tools to speed up the data analysis with conceptual interoperability to commercial cloud-based services. Our expert system leverages an innovative Modular Supercomputer Architecture to enable the fast analysis by using parallel and distributed algorithms such as association rule mining (i.e., FP-Growth) and recommender methods (i.e., collaborative filtering). It enables the seamless use of accelerators of supercomputers or cloud-based systems to perform automated product tagging (i.e., residual deep learning networks for product image analysis) to obtain colour, shapes automatically, and other product features. We validate our expert system and its enhanced knowledge representation with commercial datasets obtained from our ON4OFF research project in a retail case study in the beauty sector. 000902553 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 000902553 536__ $$0G:(EU-Grant)951732$$aEUROCC - National Competence Centres in the framework of EuroHPC (951732)$$c951732$$fH2020-JTI-EuroHPC-2019-2$$x1 000902553 536__ $$0G:(EU-Grant)754304$$aDEEP-EST - DEEP - Extreme Scale Technologies (754304)$$c754304$$fH2020-FETHPC-2016$$x2 000902553 588__ $$aDataset connected to CrossRef Conference 000902553 7001_ $$0P:(DE-Juel1)132239$$aRiedel, Morris$$b1$$ufzj 000902553 7001_ $$0P:(DE-HGF)0$$aBrynjolfsson, S.$$b2 000902553 7001_ $$0P:(DE-Juel1)171343$$aCavallaro, Gabriele$$b3$$ufzj 000902553 7001_ $$0P:(DE-Juel1)185652$$aBusch, Josefine$$b4$$ufzj 000902553 7001_ $$0P:(DE-Juel1)178695$$aSedona, Rocco$$b5$$ufzj 000902553 773__ $$a10.23919/MIPRO52101.2021.9596796 000902553 8564_ $$uhttps://juser.fz-juelich.de/record/902553/files/HPC-Based%20Retail%20Data%20Analysis%20-%20Author%20Fulltext.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510 000902553 909CO $$ooai:juser.fz-juelich.de:902553$$popenaire$$popen_access$$pdriver$$pVDB$$pec_fundedresources$$pdnbdelivery 000902553 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178934$$aForschungszentrum Jülich$$b0$$kFZJ 000902553 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132239$$aForschungszentrum Jülich$$b1$$kFZJ 000902553 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern 000902553 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171343$$aForschungszentrum Jülich$$b3$$kFZJ 000902553 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185652$$aForschungszentrum Jülich$$b4$$kFZJ 000902553 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178695$$aForschungszentrum Jülich$$b5$$kFZJ 000902553 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 000902553 9141_ $$y2021 000902553 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000902553 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000902553 980__ $$acontrib 000902553 980__ $$aVDB 000902553 980__ $$aUNRESTRICTED 000902553 980__ $$aI:(DE-Juel1)JSC-20090406 000902553 9801_ $$aFullTexts