001     902553
005     20211119141839.0
024 7 _ |a 10.23919/MIPRO52101.2021.9596796
|2 doi
024 7 _ |a 2128/29060
|2 Handle
037 _ _ |a FZJ-2021-04354
100 1 _ |a Barakat, Chadi
|0 P:(DE-Juel1)178934
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO)
|c Opatija
|d 2021-09-27 - 2021-10-01
|w Croatia
245 _ _ |a Design and Evaluation of an HPC-based Expert System to speed-up Retail Data Analysis using Residual Networks Combined with Parallel Association Rule Mining and Scalable Recommenders
260 _ _ |c 2021
300 _ _ |a 274 - 279
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1637314506_24320
|2 PUB:(DE-HGF)
520 _ _ |a Given the Covid-19 pandemic, the retail industry shifts many business models to enable more online purchases that produce large transaction data quantities (i.e., big data). Data science methods infer seasonal trends about products from this data and spikes in purchases, the effectiveness of advertising campaigns, or brand loyalty but require extensive processing power leveraging High-Performance Computing to deal with large transaction datasets. This paper proposes an High-Performance Computing-based expert system architectural design tailored for ‘big data analysis’ in the retail industry, providing data science methods and tools to speed up the data analysis with conceptual interoperability to commercial cloud-based services. Our expert system leverages an innovative Modular Supercomputer Architecture to enable the fast analysis by using parallel and distributed algorithms such as association rule mining (i.e., FP-Growth) and recommender methods (i.e., collaborative filtering). It enables the seamless use of accelerators of supercomputers or cloud-based systems to perform automated product tagging (i.e., residual deep learning networks for product image analysis) to obtain colour, shapes automatically, and other product features. We validate our expert system and its enhanced knowledge representation with commercial datasets obtained from our ON4OFF research project in a retail case study in the beauty sector.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a EUROCC - National Competence Centres in the framework of EuroHPC (951732)
|0 G:(EU-Grant)951732
|c 951732
|f H2020-JTI-EuroHPC-2019-2
|x 1
536 _ _ |a DEEP-EST - DEEP - Extreme Scale Technologies (754304)
|0 G:(EU-Grant)754304
|c 754304
|f H2020-FETHPC-2016
|x 2
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 1
|u fzj
700 1 _ |a Brynjolfsson, S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 3
|u fzj
700 1 _ |a Busch, Josefine
|0 P:(DE-Juel1)185652
|b 4
|u fzj
700 1 _ |a Sedona, Rocco
|0 P:(DE-Juel1)178695
|b 5
|u fzj
773 _ _ |a 10.23919/MIPRO52101.2021.9596796
856 4 _ |u https://juser.fz-juelich.de/record/902553/files/HPC-Based%20Retail%20Data%20Analysis%20-%20Author%20Fulltext.pdf
|y OpenAccess
|z StatID:(DE-HGF)0510
909 C O |o oai:juser.fz-juelich.de:902553
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178934
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132239
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171343
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)185652
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)178695
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21