000902556 001__ 902556 000902556 005__ 20230123110540.0 000902556 0247_ $$2doi$$a10.1016/j.ultramic.2021.113425 000902556 0247_ $$2ISSN$$a0304-3991 000902556 0247_ $$2ISSN$$a1879-2723 000902556 0247_ $$2Handle$$a2128/29071 000902556 0247_ $$2pmid$$a34800894 000902556 0247_ $$2WOS$$aWOS:000734396800009 000902556 037__ $$aFZJ-2021-04355 000902556 041__ $$aEnglish 000902556 082__ $$a570 000902556 1001_ $$0P:(DE-Juel1)177676$$aRobert, H. L.$$b0$$eCorresponding author 000902556 245__ $$aDynamical diffraction of high-energy electrons investigated by focal series momentum-resolved scanning transmission electron microscopy at atomic resolution 000902556 260__ $$aAmsterdam$$bElsevier Science$$c2022 000902556 3367_ $$2DRIVER$$aarticle 000902556 3367_ $$2DataCite$$aOutput Types/Journal article 000902556 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637567387_31325 000902556 3367_ $$2BibTeX$$aARTICLE 000902556 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000902556 3367_ $$00$$2EndNote$$aJournal Article 000902556 520__ $$aWe report a study of scattering dynamics in crystals employing momentum-resolved scanning transmission electron microscopy under varying illumination conditions. As we perform successive changes of the probe focus, multiple real-space signals are obtained in dependence of the shape of the incident electron wave. With support from extensive simulations, each signal is shown to be characterised by an optimum focus for which the contrast is maximum and which differs among different signals. For instance, a systematic focus mismatch is found between images formed by high-angle scattering, being sensitive to thickness and chemical composition, and the first moment in diffraction space, being sensitive to electric fields. It follows that a single recording at one specific probe focus is usually insufficient to characterise materials comprehensively. Most importantly, we demonstrate in experiment and simulation that the second moment of the diffracted intensity exhibits a contrast maximum when the electron probe is focused at the top and bottom faces of the specimen, making the presented concept attractive for measuring local topography. Given the versatility of , we furthermore present a detailed study of its large-angle convergence both analytically using the Mott scattering approach, and by dynamical simulations using the multislice algorithm including thermal diffuse scattering. Both approaches are in very good agreement and yield logarithmic divergence with increasing scattering angle. 000902556 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0 000902556 536__ $$0G:(DE-HGF)ZT-I-0025$$aPtychography 4.0 - Proposal for a pilot project "Information & Data Science" (ZT-I-0025)$$cZT-I-0025$$x1 000902556 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000902556 7001_ $$0P:(DE-HGF)0$$aLobato, I.$$b1 000902556 7001_ $$0P:(DE-HGF)0$$aLyu, F. J.$$b2 000902556 7001_ $$0P:(DE-Juel1)180599$$aChen, Qi$$b3$$ufzj 000902556 7001_ $$0P:(DE-HGF)0$$aVan Aert, S.$$b4 000902556 7001_ $$0P:(DE-HGF)0$$aVan Dyck, D.$$b5 000902556 7001_ $$0P:(DE-Juel1)165314$$aMüller-Caspary, K.$$b6 000902556 773__ $$0PERI:(DE-600)1479043-9$$a10.1016/j.ultramic.2021.113425$$gVol. 233, p. 113425 -$$p113425 -$$tUltramicroscopy$$v233$$x0304-3991$$y2022 000902556 8564_ $$uhttps://juser.fz-juelich.de/record/902556/files/HRobert_UM_revised.pdf$$yOpenAccess 000902556 909CO $$ooai:juser.fz-juelich.de:902556$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000902556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177676$$aForschungszentrum Jülich$$b0$$kFZJ 000902556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180599$$aForschungszentrum Jülich$$b3$$kFZJ 000902556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165314$$aForschungszentrum Jülich$$b6$$kFZJ 000902556 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0 000902556 9141_ $$y2022 000902556 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03 000902556 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03 000902556 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03 000902556 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000902556 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-15$$wger 000902556 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15 000902556 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15 000902556 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15 000902556 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-15 000902556 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-15 000902556 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-15 000902556 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bULTRAMICROSCOPY : 2021$$d2022-11-15 000902556 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15 000902556 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-15 000902556 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-15 000902556 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-15 000902556 920__ $$lyes 000902556 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0 000902556 980__ $$ajournal 000902556 980__ $$aVDB 000902556 980__ $$aUNRESTRICTED 000902556 980__ $$aI:(DE-Juel1)ER-C-1-20170209 000902556 9801_ $$aFullTexts