001     902558
005     20220111113859.0
020 _ _ |a 978-3-95806-574-1
024 7 _ |2 Handle
|a 2128/29151
037 _ _ |a FZJ-2021-04357
041 _ _ |a English
100 1 _ |0 P:(DE-Juel1)162164
|a Just, Sven
|b 0
|e Corresponding author
|g male
|u fzj
245 _ _ |a Disentangling parallel conduction channels by charge transport measurements on surfaces with a multi-tip scanning tunneling microscope
|f - 2021-10-01
260 _ _ |a Jülich
|b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag
|c 2021
300 _ _ |a xii, 225 S.
336 7 _ |2 DataCite
|a Output Types/Dissertation
336 7 _ |0 PUB:(DE-HGF)3
|2 PUB:(DE-HGF)
|a Book
|m book
336 7 _ |2 ORCID
|a DISSERTATION
336 7 _ |2 BibTeX
|a PHDTHESIS
336 7 _ |0 2
|2 EndNote
|a Thesis
336 7 _ |0 PUB:(DE-HGF)11
|2 PUB:(DE-HGF)
|a Dissertation / PhD Thesis
|b phd
|m phd
|s 1637847080_14846
336 7 _ |2 DRIVER
|a doctoralThesis
490 0 _ |a Schriften des Forschungszentrums Jülich. Reihe Information / Information
|v 69
502 _ _ |a RWTH Aachen, Diss., 2021
|b Dissertation
|c RWTH Aachen
|d 2021
520 _ _ |a Within this thesis, both position-dependent charge transport measurements with a multi-tip scanning tunneling microscope (STM) are performed, and theoretical models for describing these measured data are developed. Only a combination of both allows for actually disentangling multiple current transport channels present in parallel, in order to reveal the physical properties of the investigated systems, i.e. the conductivity of the individual channels. In chapter 2, the instrumental setup for the multi-tip STM is shown in general and the specific methods used for tip positioning are discussed. An introduction into the theory of distance-dependent four-point resistance measurements is given in chapter 3. Here, the relations between four-point resistance and conductivity influenced by the chosen probe geometry are discussed for both a pure two-dimensional and a pure three-dimensional system. Furthermore, also anisotropic conductance in two dimensions is considered. Chapters 4 – 7 depict actual measurements with the multi-tip STM on different sample systems, as semiconductors and topological insulators. First, in chapter 4 the conductivity of the Si(111)-(7×7) surface and the influence of atomic steps of the underlying substrate are investigated. In order to interpret the measured resistances, a 3-layer model is introduced which allows for a description by three parallel conductance channels, i.e. the surface, the space charge region and the bulk. Such a model enables to extract a value for the surface conductivity from the measurements. Moreover, by a measurement of the conductance anisotropy on the surface, the conductivity of a single atomic step can be disentangled from the conductivity of the step-free terraces. In chapter 5, the 3-layer model is extended to an N-layer model in order to model the strongly depth-dependent conductivity of the near-surface space charge region in semiconductors in a more precise way. In order to demonstrate the universal applicability of the N-layer model, it is used to extract values for the surface conductivity of Ge(100)-(2×1) and Si(100)-(2×1) reconstructions from data already published in the literature, but not evaluated in terms of the surface conductivity. Chapter 6 depicts a further combined experimental and theoretical approach in order to reveal parallel conductance channels in topological insulators thin films, i.e. the interface channel at the boundary to the substrate and the interior of the film itself, which are both in parallel to the transport channel through the topological surface states at top and bottom surface of the film. From measurements on specific surface reconstructions, the conductivity of the interface channel can be revealed, while the interior of the thin film is approached by band bending calculations in combination with results from angle-resolved photoemission spectroscopy measurements (ARPES). [...]
536 _ _ |0 G:(DE-HGF)POF4-5213
|a 5213 - Quantum Nanoscience (POF4-521)
|c POF4-521
|f POF IV
|x 0
856 4 _ |u https://juser.fz-juelich.de/record/902558/files/Information_69.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:902558
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)162164
|a Forschungszentrum Jülich
|b 0
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-521
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5213
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Quantum Materials
|x 0
914 1 _ |y 2021
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a phd
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a book
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21