000902560 001__ 902560
000902560 005__ 20240712100904.0
000902560 0247_ $$2doi$$a10.3389/fenvs.2021.766538
000902560 0247_ $$2Handle$$a2128/29078
000902560 0247_ $$2altmetric$$aaltmetric:116461656
000902560 0247_ $$2WOS$$aWOS:000721053800001
000902560 037__ $$aFZJ-2021-04359
000902560 082__ $$a333.7
000902560 1001_ $$0P:(DE-HGF)0$$aAsutosh, Acharya$$b0$$eCorresponding author
000902560 245__ $$aThe Arctic Temperature Response to Global and Regional Anthropogenic Sulfate Aerosols
000902560 260__ $$aLausanne$$bFrontiers Media$$c2021
000902560 3367_ $$2DRIVER$$aarticle
000902560 3367_ $$2DataCite$$aOutput Types/Journal article
000902560 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637591714_32718
000902560 3367_ $$2BibTeX$$aARTICLE
000902560 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902560 3367_ $$00$$2EndNote$$aJournal Article
000902560 520__ $$aThe mechanisms behind Arctic warming and associated climate changes are difficult todiscern. Also, the complex local processes and feedbacks like aerosol-cloud-climateinteractions are yet to be quantified. Here, using the Community Earth System Model(CAM5) experiments, with emission enhancement of anthropogenic sulfate 1) five-foldglobally, 2) ten-times over Asia, and 3) ten-times over Europe we show that regionalemissions of sulfate aerosols alter seasonal warming over the Arctic, i.e., colder summerand warmer winter. European emissions play a dominant role in cooling during the summerseason (0.7 K), while Asian emissions dominate the warming during the winter season(maximum ∼0.6 K) in the Arctic surface. The cooling/warming is associated with a negative/positive cloud radiative forcing. During the summer season increase in low–mid levelclouds, induced by sulfate emissions, favours the solar dimming effect that reduces thedownwelling radiation to the surface and thus leads to surface cooling. Warmer winters areassociated with enhanced high-level clouds that induce a positive radiative forcing at thetop of the atmosphere. This study points to the importance of international strategies beingimplemented to control sulfate emissions to combat air pollution. Such strategies will alsoaffect the Arctic cooling/warming associated with a cloud radiative forcing caused bysulfate emission change.
000902560 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000902560 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902560 7001_ $$0P:(DE-HGF)0$$aFadnavis, Suvarna$$b1$$eCorresponding author
000902560 7001_ $$0P:(DE-HGF)0$$aNuncio, M.$$b2
000902560 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b3
000902560 7001_ $$0P:(DE-HGF)0$$aTripathy, Sarat C.$$b4
000902560 773__ $$0PERI:(DE-600)2741535-1$$a10.3389/fenvs.2021.766538$$gVol. 9, p. 766538$$p766538$$tFrontiers in Environmental Science$$v9$$x2296-665X$$y2021
000902560 8564_ $$uhttps://juser.fz-juelich.de/record/902560/files/fenvs-09-766538.pdf$$yOpenAccess
000902560 909CO $$ooai:juser.fz-juelich.de:902560$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b3$$kFZJ
000902560 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000902560 9141_ $$y2021
000902560 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-28
000902560 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-28
000902560 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-28
000902560 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-28
000902560 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902560 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-08-28
000902560 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-28
000902560 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-28
000902560 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-28
000902560 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-28
000902560 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-28
000902560 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902560 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-08-28
000902560 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-28
000902560 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-28
000902560 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-28
000902560 920__ $$lyes
000902560 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000902560 9801_ $$aFullTexts
000902560 980__ $$ajournal
000902560 980__ $$aVDB
000902560 980__ $$aUNRESTRICTED
000902560 980__ $$aI:(DE-Juel1)IEK-7-20101013
000902560 981__ $$aI:(DE-Juel1)ICE-4-20101013