001     902563
005     20211130111053.0
024 7 _ |a 10.1038/s41598-021-97140-7
|2 doi
024 7 _ |a 2128/29065
|2 Handle
024 7 _ |a altmetric:113137435
|2 altmetric
024 7 _ |a pmid:34497278
|2 pmid
024 7 _ |a WOS:000693895300003
|2 WOS
037 _ _ |a FZJ-2021-04362
082 _ _ |a 600
100 1 _ |a Le Clerc, Sigrid
|b 0
245 _ _ |a HLA-DRB1 and HLA-DQB1 genetic diversity modulates response to lithium in bipolar affective disorders
260 _ _ |a [London]
|c 2021
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1637323398_24320
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Bipolar affective disorder (BD) is a severe psychiatric illness, for which lithium (Li) is the gold standard for acute and maintenance therapies. The therapeutic response to Li in BD is heterogeneous and reliable biomarkers allowing patients stratification are still needed. A GWAS performed by the International Consortium on Lithium Genetics (ConLiGen) has recently identified genetic markers associated with treatment responses to Li in the human leukocyte antigens (HLA) region. To better understand the molecular mechanisms underlying this association, we have genetically imputed the classical alleles of the HLA region in the European patients of the ConLiGen cohort. We found our best signal for amino-acid variants belonging to the HLA-DRB1*11:01 classical allele, associated with a better response to Li (p < 1 × 10−3; FDR < 0.09 in the recessive model). Alanine or Leucine at position 74 of the HLA-DRB1 heavy chain was associated with a good response while Arginine or Glutamic acid with a poor response. As these variants have been implicated in common inflammatory/autoimmune processes, our findings strongly suggest that HLA-mediated low inflammatory background may contribute to the efficient response to Li in BD patients, while an inflammatory status overriding Li anti-inflammatory properties would favor a weak response.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lombardi, Laura
|b 1
700 1 _ |a Baune, Bernhard T.
|b 2
700 1 _ |a Amare, Azmeraw T.
|b 3
700 1 _ |a Schubert, Klaus Oliver
|b 4
700 1 _ |a Hou, Liping
|b 5
700 1 _ |a Clark, Scott R.
|b 6
700 1 _ |a Papiol, Sergi
|b 7
700 1 _ |a Cearns, Micah
|b 8
700 1 _ |a Heilbronner, Urs
|b 9
700 1 _ |a Degenhardt, Franziska
|b 10
700 1 _ |a Tekola-Ayele, Fasil
|b 11
700 1 _ |a Hsu, Yi-Hsiang
|b 12
700 1 _ |a Shekhtman, Tatyana
|b 13
700 1 _ |a Adli, Mazda
|b 14
700 1 _ |a Akula, Nirmala
|b 15
700 1 _ |a Akiyama, Kazufumi
|b 16
700 1 _ |a Ardau, Raffaella
|b 17
700 1 _ |a Arias, Bárbara
|b 18
700 1 _ |a Aubry, Jean-Michel
|b 19
700 1 _ |a Backlund, Lena
|b 20
700 1 _ |a Bhattacharjee, Abesh Kumar
|b 21
700 1 _ |a Bellivier, Frank
|b 22
700 1 _ |a Benabarre, Antonio
|b 23
700 1 _ |a Bengesser, Susanne
|b 24
700 1 _ |a Biernacka, Joanna M.
|b 25
700 1 _ |a Birner, Armin
|b 26
700 1 _ |a Brichant-Petitjean, Clara
|b 27
700 1 _ |a Cervantes, Pablo
|b 28
700 1 _ |a Chen, Hsi-Chung
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Chillotti, Caterina
|b 30
700 1 _ |a Cichon, Sven
|0 P:(DE-Juel1)140234
|b 31
|u fzj
700 1 _ |a Cruceanu, Cristiana
|b 32
700 1 _ |a Czerski, Piotr M.
|b 33
700 1 _ |a Dalkner, Nina
|b 34
700 1 _ |a Dayer, Alexandre
|b 35
700 1 _ |a Del Zompo, Maria
|b 36
700 1 _ |a DePaulo, J. Raymond
|b 37
700 1 _ |a Étain, Bruno
|b 38
700 1 _ |a Jamain, Stephane
|b 39
700 1 _ |a Falkai, Peter
|b 40
700 1 _ |a Forstner, Andreas J.
|0 P:(DE-Juel1)186755
|b 41
|u fzj
700 1 _ |a Frisen, Louise
|b 42
700 1 _ |a Frye, Mark A.
|b 43
700 1 _ |a Fullerton, Janice M.
|b 44
700 1 _ |a Gard, Sébastien
|b 45
700 1 _ |a Garnham, Julie S.
|b 46
700 1 _ |a Goes, Fernando S.
|b 47
700 1 _ |a Grigoroiu-Serbanescu, Maria
|b 48
700 1 _ |a Grof, Paul
|b 49
700 1 _ |a Hashimoto, Ryota
|b 50
700 1 _ |a Hauser, Joanna
|b 51
700 1 _ |a Herms, Stefan
|b 52
700 1 _ |a Hoffmann, Per
|b 53
700 1 _ |a Jiménez, Esther
|b 54
700 1 _ |a Kahn, Jean-Pierre
|b 55
700 1 _ |a Kassem, Layla
|b 56
700 1 _ |a Kuo, Po-Hsiu
|b 57
700 1 _ |a Kato, Tadafumi
|b 58
700 1 _ |a Kelsoe, John R.
|b 59
700 1 _ |a Kittel-Schneider, Sarah
|b 60
700 1 _ |a Ferensztajn-Rochowiak, Ewa
|b 61
700 1 _ |a König, Barbara
|b 62
700 1 _ |a Kusumi, Ichiro
|b 63
700 1 _ |a Laje, Gonzalo
|b 64
700 1 _ |a Landén, Mikael
|b 65
700 1 _ |a Lavebratt, Catharina
|b 66
700 1 _ |a Leckband, Susan G.
|b 67
700 1 _ |a Tortorella, Alfonso
|b 68
700 1 _ |a Manchia, Mirko
|b 69
700 1 _ |a Martinsson, Lina
|b 70
700 1 _ |a McCarthy, Michael J.
|b 71
700 1 _ |a McElroy, Susan L.
|b 72
700 1 _ |a Colom, Francesc
|b 73
700 1 _ |a Millischer, Vincent
|b 74
700 1 _ |a Mitjans, Marina
|b 75
700 1 _ |a Mondimore, Francis M.
|b 76
700 1 _ |a Monteleone, Palmiero
|b 77
700 1 _ |a Nievergelt, Caroline M.
|b 78
700 1 _ |a Nöthen, Markus M.
|b 79
700 1 _ |a Novák, Tomas
|b 80
700 1 _ |a O’Donovan, Claire
|b 81
700 1 _ |a Ozaki, Norio
|b 82
700 1 _ |a Ösby, Urban
|b 83
700 1 _ |a Pfennig, Andrea
|b 84
700 1 _ |a Potash, James B.
|b 85
700 1 _ |a Reif, Andreas
|b 86
700 1 _ |a Reininghaus, Eva
|b 87
700 1 _ |a Rouleau, Guy A.
|b 88
700 1 _ |a Rybakowski, Janusz K.
|b 89
700 1 _ |a Schalling, Martin
|b 90
700 1 _ |a Schofield, Peter R.
|b 91
700 1 _ |a Schweizer, Barbara W.
|b 92
700 1 _ |a Severino, Giovanni
|b 93
700 1 _ |a Shilling, Paul D.
|b 94
700 1 _ |a Shimoda, Katzutaka
|b 95
700 1 _ |a Simhandl, Christian
|b 96
700 1 _ |a Slaney, Claire M.
|b 97
700 1 _ |a Pisanu, Claudia
|b 98
700 1 _ |a Squassina, Alessio
|b 99
700 1 _ |a Stamm, Thomas
|b 100
700 1 _ |a Stopkova, Pavla
|b 101
700 1 _ |a Maj, Mario
|b 102
700 1 _ |a Turecki, Gustavo
|b 103
700 1 _ |a Vieta, Eduard
|b 104
700 1 _ |a Veeh, Julia
|b 105
700 1 _ |a Witt, Stephanie H.
|b 106
700 1 _ |a Wright, Adam
|b 107
700 1 _ |a Zandi, Peter P.
|b 108
700 1 _ |a Mitchell, Philip B.
|b 109
700 1 _ |a Bauer, Michael
|b 110
700 1 _ |a Alda, Martin
|b 111
700 1 _ |a Rietschel, Marcella
|b 112
700 1 _ |a McMahon, Francis J.
|b 113
700 1 _ |a Schulze, Thomas G.
|b 114
700 1 _ |a Spadoni, Jean-Louis
|b 115
700 1 _ |a Boukouaci, Wahid
|b 116
700 1 _ |a Richard, Jean-Romain
|b 117
700 1 _ |a Le Corvoisier, Philippe
|b 118
700 1 _ |a Barrau, Caroline
|b 119
700 1 _ |a Zagury, Jean-François
|b 120
700 1 _ |a Leboyer, Marion
|b 121
700 1 _ |a Tamouza, Ryad
|b 122
773 _ _ |a 10.1038/s41598-021-97140-7
|g Vol. 11, no. 1, p. 17823
|0 PERI:(DE-600)2615211-3
|n 1
|p 17823
|t Scientific reports
|v 11
|y 2021
|x 2045-2322
856 4 _ |u https://juser.fz-juelich.de/record/902563/files/Le%20Clerc_etal_Scientific%20reports_2021.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:902563
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 31
|6 P:(DE-Juel1)140234
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 41
|6 P:(DE-Juel1)186755
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2021
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2019
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-03
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21