000902564 001__ 902564
000902564 005__ 20220930130332.0
000902564 0247_ $$2doi$$a10.1016/j.tins.2021.10.003
000902564 0247_ $$2ISSN$$a0166-2236
000902564 0247_ $$2ISSN$$a1878-108X
000902564 0247_ $$2Handle$$a2128/29189
000902564 0247_ $$2altmetric$$aaltmetric:115852784
000902564 0247_ $$2pmid$$apmid:34756460
000902564 0247_ $$2WOS$$aWOS:000722893100008
000902564 037__ $$aFZJ-2021-04363
000902564 082__ $$a610
000902564 1001_ $$0P:(DE-Juel1)161225$$aGenon, Sarah$$b0$$eCorresponding author$$ufzj
000902564 245__ $$aThe many dimensions of human hippocampal organization and (dys)function
000902564 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000902564 3367_ $$2DRIVER$$aarticle
000902564 3367_ $$2DataCite$$aOutput Types/Journal article
000902564 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1653296122_32185
000902564 3367_ $$2BibTeX$$aARTICLE
000902564 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902564 3367_ $$00$$2EndNote$$aJournal Article
000902564 520__ $$aMagnetic resonance imaging–based parcellation of the hippocampal formation and gradient mapping are data-driven techniques that can capture many dimensions of hippocampal organization and provide readily usable outcomes. Features of cortical architecture, such as local connectivity and microstructure, reveal differentiation within the hippocampal formation along the medial–lateral axis. This organizational dimension seemingly reflects local information-processing organization. Neuroimaging markers tapping into hippocampal integration into large-scale networks (i.e., whole-brain connectivity) highlight the long-axis differentiation. The long-axis organization corresponds to a molecular gradient and differential integration across distinct behavioral systems. Capitalizing on gradients and parcellations maps, the long-axis organization of the hippocampal formation can be related to behavioral phenotypes in healthy and clinical populations.
000902564 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000902564 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x1
000902564 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x2
000902564 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x3
000902564 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902564 7001_ $$0P:(DE-HGF)0$$aBernhardt, Boris C.$$b1
000902564 7001_ $$0P:(DE-HGF)0$$aLa Joie, Renaud$$b2
000902564 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b3$$ufzj
000902564 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b4$$ufzj
000902564 773__ $$0PERI:(DE-600)2011000-5$$a10.1016/j.tins.2021.10.003$$gp. S0166223621001892$$n12$$p977-989$$tTrends in neurosciences$$v44$$x0166-2236$$y2021
000902564 8564_ $$uhttps://juser.fz-juelich.de/record/902564/files/Invoice_OAD0000151450.pdf
000902564 8564_ $$uhttps://juser.fz-juelich.de/record/902564/files/1-s2.0-S0166223621001892-main.pdf$$yOpenAccess
000902564 8767_ $$8OAD0000151450$$92021-10-07$$a1200181345$$d2022-05-25$$eHybrid-OA$$jZahlung erfolgt
000902564 909CO $$ooai:juser.fz-juelich.de:902564$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000902564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161225$$aForschungszentrum Jülich$$b0$$kFZJ
000902564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b3$$kFZJ
000902564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b4$$kFZJ
000902564 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000902564 9141_ $$y2021
000902564 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000902564 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000902564 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-30
000902564 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000902564 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000902564 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTRENDS NEUROSCI : 2019$$d2021-01-30
000902564 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bTRENDS NEUROSCI : 2019$$d2021-01-30
000902564 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-30
000902564 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000902564 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000902564 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902564 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000902564 915__ $$0StatID:(DE-HGF)1120$$2StatID$$aDBCoverage$$bBIOSIS Reviews Reports And Meetings$$d2021-01-30
000902564 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000902564 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000902564 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000902564 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000902564 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x1
000902564 9801_ $$aFullTexts
000902564 980__ $$ajournal
000902564 980__ $$aVDB
000902564 980__ $$aI:(DE-Juel1)INM-1-20090406
000902564 980__ $$aI:(DE-Juel1)INM-7-20090406
000902564 980__ $$aUNRESTRICTED
000902564 980__ $$aAPC