000902571 001__ 902571
000902571 005__ 20230310131351.0
000902571 0247_ $$2doi$$a10.1016/j.ssci.2021.105574
000902571 0247_ $$2ISSN$$a0925-7535
000902571 0247_ $$2ISSN$$a1879-1042
000902571 0247_ $$2Handle$$a2128/29067
000902571 0247_ $$2altmetric$$aaltmetric:117212081
000902571 0247_ $$2WOS$$aWOS:000722140000005
000902571 037__ $$aFZJ-2021-04370
000902571 041__ $$aEnglish
000902571 082__ $$a610
000902571 1001_ $$0P:(DE-HGF)0$$aXiao, Yao$$b0
000902571 245__ $$aA generalized trajectories-based evaluation approach for pedestrian evacuation models
000902571 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022
000902571 3367_ $$2DRIVER$$aarticle
000902571 3367_ $$2DataCite$$aOutput Types/Journal article
000902571 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637335112_4887
000902571 3367_ $$2BibTeX$$aARTICLE
000902571 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902571 3367_ $$00$$2EndNote$$aJournal Article
000902571 520__ $$aThe fundamental diagram and self-organized phenomena in crowds are widely used to test the applicability of evacuation models. These benchmarks are good indicators for the validity of a model, whereas they are insufficient descriptors for the realistic microscopic behaviors of pedestrians. In recent years, the rapid increase of the trajectory datasets which benefits from the development of recognition technologies open the door to new possibilities for an extensive quantitative validation of the models. In this work, a trajectories-based analysis approach which contains types of indexes is proposed. The indexes are a mix of macroscopic type (fundamental diagram index, speed choice index, and direction choice index) and microscopic type (trajectories pattern index), distribution type (route length distribution index, travel time distribution index) and time-series type (starting position distance time-series index, destination position distance time-series index. Moreover, the Kolmogorov-Smirnov (K-S) test as well as the dynamic time warping (DTW) method are introduced to quantify the similarities of results on different types of indexes. In brief, by comparing experimental and simulation trajectories, we can measure a set of performance scores in different perspectives. Here, the Social Force Model (SFM) and Heuristics Model (HM) are respectively introduced and evaluated. According to the proposed evaluation approach, we show that the HM performs better than the SFM. Our analysis approach is model agnostic and is defined in a general way, such that it can be applied for trajectory sets from different experiment settings. This work can help to improve the accuracy of simulation models, and the pedestrian safety in crowd activities and autonomous vehicle navigation will be benefited.
000902571 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000902571 536__ $$0G:(GEPRIS)446168800$$aDFG project 446168800 - Multi-Agent-Modellierung der Dynamik von dichten Fußgängermengen: Vorhersagen Verstehen (446168800)$$c446168800$$x1
000902571 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902571 7001_ $$0P:(DE-HGF)0$$aXu, Jun$$b1
000902571 7001_ $$0P:(DE-Juel1)132077$$aChraibi, Mohcine$$b2$$eCorresponding author
000902571 7001_ $$0P:(DE-HGF)0$$aZhang, Jun$$b3
000902571 7001_ $$0P:(DE-HGF)0$$aGou, Chao$$b4
000902571 773__ $$0PERI:(DE-600)2021100-4$$a10.1016/j.ssci.2021.105574$$gVol. 147, p. 105574 -$$p105574 -$$tSafety science$$v147$$x0925-7535$$y2022
000902571 8564_ $$uhttps://juser.fz-juelich.de/record/902571/files/Manu%20-%20Trajectory%20Evaluation.pdf$$yPublished on 2021-11-18. Available in OpenAccess from 2024-11-18.
000902571 909CO $$ooai:juser.fz-juelich.de:902571$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902571 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132077$$aForschungszentrum Jülich$$b2$$kFZJ
000902571 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000902571 9141_ $$y2022
000902571 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000902571 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000902571 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000902571 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000902571 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-16$$wger
000902571 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSAFETY SCI : 2021$$d2022-11-16
000902571 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-16
000902571 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-16
000902571 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-16
000902571 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-16
000902571 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-16
000902571 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-16
000902571 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-16
000902571 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSAFETY SCI : 2021$$d2022-11-16
000902571 920__ $$lyes
000902571 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
000902571 980__ $$ajournal
000902571 980__ $$aVDB
000902571 980__ $$aUNRESTRICTED
000902571 980__ $$aI:(DE-Juel1)IAS-7-20180321
000902571 9801_ $$aFullTexts