001     902571
005     20230310131351.0
024 7 _ |a 10.1016/j.ssci.2021.105574
|2 doi
024 7 _ |a 0925-7535
|2 ISSN
024 7 _ |a 1879-1042
|2 ISSN
024 7 _ |a 2128/29067
|2 Handle
024 7 _ |a altmetric:117212081
|2 altmetric
024 7 _ |a WOS:000722140000005
|2 WOS
037 _ _ |a FZJ-2021-04370
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Xiao, Yao
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A generalized trajectories-based evaluation approach for pedestrian evacuation models
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1637335112_4887
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The fundamental diagram and self-organized phenomena in crowds are widely used to test the applicability of evacuation models. These benchmarks are good indicators for the validity of a model, whereas they are insufficient descriptors for the realistic microscopic behaviors of pedestrians. In recent years, the rapid increase of the trajectory datasets which benefits from the development of recognition technologies open the door to new possibilities for an extensive quantitative validation of the models. In this work, a trajectories-based analysis approach which contains types of indexes is proposed. The indexes are a mix of macroscopic type (fundamental diagram index, speed choice index, and direction choice index) and microscopic type (trajectories pattern index), distribution type (route length distribution index, travel time distribution index) and time-series type (starting position distance time-series index, destination position distance time-series index. Moreover, the Kolmogorov-Smirnov (K-S) test as well as the dynamic time warping (DTW) method are introduced to quantify the similarities of results on different types of indexes. In brief, by comparing experimental and simulation trajectories, we can measure a set of performance scores in different perspectives. Here, the Social Force Model (SFM) and Heuristics Model (HM) are respectively introduced and evaluated. According to the proposed evaluation approach, we show that the HM performs better than the SFM. Our analysis approach is model agnostic and is defined in a general way, such that it can be applied for trajectory sets from different experiment settings. This work can help to improve the accuracy of simulation models, and the pedestrian safety in crowd activities and autonomous vehicle navigation will be benefited.
536 _ _ |a 5111 - Domain-Specific Simulation Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|x 0
|f POF IV
536 _ _ |a DFG project 446168800 - Multi-Agent-Modellierung der Dynamik von dichten Fußgängermengen: Vorhersagen Verstehen (446168800)
|0 G:(GEPRIS)446168800
|c 446168800
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Xu, Jun
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Chraibi, Mohcine
|0 P:(DE-Juel1)132077
|b 2
|e Corresponding author
700 1 _ |a Zhang, Jun
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gou, Chao
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1016/j.ssci.2021.105574
|g Vol. 147, p. 105574 -
|0 PERI:(DE-600)2021100-4
|p 105574 -
|t Safety science
|v 147
|y 2022
|x 0925-7535
856 4 _ |u https://juser.fz-juelich.de/record/902571/files/Manu%20-%20Trajectory%20Evaluation.pdf
|y Published on 2021-11-18. Available in OpenAccess from 2024-11-18.
909 C O |o oai:juser.fz-juelich.de:902571
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132077
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-16
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SAFETY SCI : 2021
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SAFETY SCI : 2021
|d 2022-11-16
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21