001     902580
005     20220210164005.0
024 7 _ |a 10.1103/PhysRevB.104.195138
|2 doi
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 2469-9977
|2 ISSN
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/29374
|2 Handle
024 7 _ |a altmetric:118265819
|2 altmetric
024 7 _ |a WOS:000744272400006
|2 WOS
037 _ _ |a FZJ-2021-04379
082 _ _ |a 530
100 1 _ |a Sheverdyaeva, P. M.
|0 0000-0002-4231-1638
|b 0
|e Corresponding author
245 _ _ |a Topological properties and self-energy effects in elemental Yb
260 _ _ |a Woodbury, NY
|c 2021
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1638949031_27262
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Recent theoretical calculations predict the presence of Dirac nodal lines with π Berry phase and related topological surface states in elemental alkaline-earth metals. Here we provide experimental and theoretical evidence for the existence of similar nodal lines also in hexagonal close-packed Yb, an element of the lanthanide series, in the limit of zero spin-orbit coupling. These topological properties emerge after taking into account self-energy corrections, which permit one to correctly describe the experimental low-energy electronic structure of Yb. By angle-resolved photoemission spectroscopy we demonstrate the occurrence of topological surface states in Yb which are robust in the presence of the large spin-orbit coupling.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Offi, F.
|0 0000-0002-6130-8733
|b 1
700 1 _ |a Gardonio, S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Novinec, L.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Trioni, M. I.
|0 0000-0001-6165-1032
|b 4
700 1 _ |a Ceresoli, D.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Iacobucci, S.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Ruocco, A.
|0 0000-0002-4909-7216
|b 7
700 1 _ |a Stefani, G.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Petaccia, L.
|0 0000-0001-8698-1468
|b 9
700 1 _ |a Gorovikov, S.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Cappelluti, E.
|0 0000-0003-2799-8504
|b 11
700 1 _ |a Moras, P.
|0 0000-0002-7771-8737
|b 12
700 1 _ |a Bihlmayer, G.
|0 P:(DE-Juel1)130545
|b 13
|e Corresponding author
700 1 _ |a Blügel, S.
|0 P:(DE-Juel1)130548
|b 14
700 1 _ |a Carbone, C.
|0 P:(DE-HGF)0
|b 15
773 _ _ |a 10.1103/PhysRevB.104.195138
|g Vol. 104, no. 19, p. 195138
|0 PERI:(DE-600)2844160-6
|n 19
|p 195138
|t Physical review / B
|v 104
|y 2021
|x 1098-0121
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/902580/files/PhysRevB.104.195138.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/902580/files/Yb0001_PRB.pdf
909 C O |o oai:juser.fz-juelich.de:902580
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)130545
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)130548
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-05-04
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2019
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21