001     902589
005     20230303201754.0
024 7 _ |a 10.1002/adma.202105022
|2 doi
024 7 _ |a 0935-9648
|2 ISSN
024 7 _ |a 1521-4095
|2 ISSN
024 7 _ |a 2128/30607
|2 Handle
024 7 _ |a altmetric:117331777
|2 altmetric
024 7 _ |a pmid:34695257
|2 pmid
024 7 _ |a WOS:000720734600001
|2 WOS
037 _ _ |a FZJ-2021-04384
082 _ _ |a 660
100 1 _ |a Chen, Shaochuan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Design of Materials Configuration for Optimizing Redox‐Based Resistive Switching Memories
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1643292421_16643
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Redox-based resistive random access memories (ReRAMs) are based on electrochemical processes of oxidation and reduction within the devices. The selection of materials and material combinations strongly influence the related nanoscale processes, playing a crucial role in resistive switching properties and functionalities. To date, however, comprehensive studies on device design accounting for a combination of factors such as electrodes, electrolytes, and capping layer materials related to their thicknesses and interactions are scarce. In this work, the impact of materials’ configuration on interfacial redox reactions in HfO2-based electrochemical metallization memory (ECM) and valence-change memory (VCM) systems is reported. The redox processes are studied by cyclic voltammetry, and the corresponding resistive switching characteristics are investigated. In ECM cells, the overall cell resistance depends on the electrocatalytic activity of the counter electrode. Nonetheless, the capping layer material further influences the cell resistance and the SET and RESET voltages. In VCM systems, the influence of the electrode material configuration is also pronounced, and is capable of modulating the active resistive switching interface. For both types of memory cells, the switching behavior changes significantly with variation of the oxide thickness. The results present important materials selection criteria for rationale design of ReRAM cells for various memristive applications.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Valov, Ilia
|0 P:(DE-Juel1)131014
|b 1
|e Corresponding author
773 _ _ |a 10.1002/adma.202105022
|g p. 2105022 -
|0 PERI:(DE-600)1474949-X
|n 3
|p 2105022
|t Advanced materials
|v 34
|y 2022
|x 0935-9648
856 4 _ |u https://juser.fz-juelich.de/record/902589/files/Advanced%20Materials%20-%202021%20-%20Chen%20-%20Design%20of%20Materials%20Configuration%20for%20Optimizing%20Redox%25u2010Based%20Resistive%20Switching.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:902589
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
|q OpenAPC
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131014
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-02-04
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-16
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER : 2021
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-16
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b ADV MATER : 2021
|d 2022-11-16
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21