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1 Many-electron states

One of the great mysteries of quantum mechanics is the existence of indistinguishable objects.
Classically this is not possible: objects can always be distinguished, at least by their position
in space, meaning that indistinguishable objects must be identical. This is Leibniz’ Principle
of the Identity of Indiscernibles [1]. For quantum objects, however, the uncertainty principle
makes the distinction of particles by their position impossible. This allows for the existence
of elementary particles. They form the basic units of all matter. So, quite remarkably, all the
different objects we know are made of indistinguishable building blocks.
In the formalism of quantum mechanics, indistinguishability means that no observable lets us
distinguish one of these particles from the other. Consequently, every observable for, e.g.,
electrons, must treat each electron in the same way. Thus, in principle, observables must act on
all the electrons in the universe. In practice we can, of course, distinguish electrons localized on
the moon from those in our lab to an excellent approximation. Thus, for all practical purposes,
we can restrict ourselves to the electrons in the system under consideration, assuming that the
differential overlap with all other electrons vanishes. Any observable M(x1, . . . , xN) for the N
electrons in our system must then be symmetric under permutations of the coordinates xi.
The consequences are straightforward: An observable M(x) acting on a single-particle degree
of freedom x must act on all indistinguishable particles in the same way, i.e.,

∑
iM(xi). Like-

wise, a two-body observable M(x, x′) must act on all pairs in the same way,
∑

i,jM(xi, xj)

with M(x, x′) = M(x′, x). We can thus write any observable in the form

M(x) = M (0) +
∑
i

M (1)(xi) +
1

2!

∑
i 6=j

M (2)(xi, xj) +
1

3!

∑
i 6=j 6=k

M (3)(xi, xj, xk) + · · · (1)

= M (0) +
∑
i

M (1)(xi) +
∑
i<j

M (2)(xi, xj) +
∑
i<j<k

M (3)(xi, xj, xk) + · · · , (2)

where the summations can be restricted since the operators must be symmetric in their argu-
ments, while for two or more identical coordinates the operator is really one of lower order:
M (2)(xi, xi), e.g., only acts on a single coordinate and should be included in M (1).
For the many-body wave functions Ψ(x1, x2, · · · ) the situation is slightly more complex. Since
the probability density |Ψ(x1, x2, · · · )|2 is an observable, the wave function should transform
as one-dimensional (irreducible) representations of the permutation group. Which irreducible
representation applies to a given type of elementary particle is determined by the spin-statistics
theorem [2, 3]: The wave functions of particles with integer spin are symmetric, those of parti-
cles with half-integer spin change sign when two arguments are exchanged. From an arbitrary
N -particle wave function we thus obtain a many-electron wavefunction by antisymmetrizing

AΨ(x1, . . . , xN) :=
1

N !

∑
P

(−1)PΨ
(
xp(1), . . . , xp(N)

)
, (3)

where (−1)P is the parity of the permutation P that maps n→ p(n). Since there areN ! different
permutations, this can easily become an extremely costly operation. Remarkably, a product of
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N single-electron states ϕα can be antisymmetrized much more efficiently (in O(N3) steps) by
writing it in the form of a determinant

Φα1,...,αN (x1, . . . , xN) :=
1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕα1(x1) ϕα2(x1) · · · ϕαN (x1)

ϕα1(x2) ϕα2(x2) · · · ϕαN (x2)
...

... . . . ...
ϕα1(xN) ϕα2(xN)· · ·ϕαN (xN)

∣∣∣∣∣∣∣∣∣∣
=
√
N !Aϕα1(x1) · · ·ϕαN (xN)

(4)
For N=1 the Slater determinant is simply the one-electron orbital Φα(x) = ϕα(x) while for
N=2 we get the familiar expression Φα,α′(x, x′) =

(
ϕα(x)ϕα′(x

′)−ϕα′(x)ϕα(x′)
)
/
√

2 for the
two-electron Slater determinant.
Slater determinants are important because they can be used to build a basis of the many-electron
Hilbert space. To see how, we consider a complete set of orthonormal single-electron states∑

n

ϕαn(x)ϕαn(x′) = δ(x−x′) (complete)
∫
dxϕαn(x)ϕαm(x) = δn,m (orthonormal) .

(5)
To expand an arbitrary N -particle function a(x1, . . . , xN), we start by considering it as a func-
tion of x1 with the x2, . . . , xN kept fixed. We can then expand it in the complete set {ϕαn} as

a(x1, . . . , xN) =
∑
α1

aα1(x2, . . . , xN)ϕα1(x1)

with expansion coefficients that depend on the remaining coordinates

aα1(x2, . . . , xN) =

∫
dx1 ϕα1(x1) a(x1, x2, . . . , xN) .

These, in turn, can be expanded as a functions of x2

aα1(x2, . . . , xN) =
∑
α2

aα1,α2(x3, . . . , xN)ϕα2(x2) .

Repeating this, we obtain the expansion of a in product states

a(x1, . . . , xN) =
∑

α1,...,αN

aα1,...,αN ϕα1(x1) · · ·ϕαN (xN) .

When theN -particle function is antisymmetric, the expansion coefficients must be antisymmet-
ric under permutation of the indices: aαp(1),...,αp(N)

= (−1)Paα1,...,αN . Fixing some particular
order of the indices, e.g., α1 < α2 < . . . < αN , we thus get an expansion in Slater determinants

Ψ(x1, . . . , xN) =
∑

α1<...<αN

aα1,...,αN

∑
P

(−1)Pϕαp(1)(x1) · · ·ϕαp(N)
(xN)︸ ︷︷ ︸

=
√
N !Φα1,...,αN (x1,...,xN )

.

Since we can write any antisymmetric function as such a configuration-interaction expansion,
the set of Slater determinants{

Φα1,...,αN (x1, . . . , xN)
∣∣∣ α1 < α2 < · · · < αN

}
(6)
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forms a basis of the N -electron Hilbert space. Since the overlap of two Slater determinants∫
dx Φα1,...,αN (x)Φβ1,...,βN (x) =

1

N !

∑
P,P ′

(−1)P+P ′
∏
n

∫
dxn ϕαp(n)(xn)ϕαp′(n)(xn)

=

∣∣∣∣∣∣∣
〈ϕα1|ϕβ1〉 · · · 〈ϕα1|ϕβN 〉

... . . . ...
〈ϕαN |ϕβ1〉 · · · 〈ϕαN |ϕβN 〉

∣∣∣∣∣∣∣ (7)

is the determinant of the overlap of the constituent orbitals, the Slater determinants (6) form
a complete orthonormal basis of the N -electron Hilbert space when the orbitals ϕn(x) are a
complete orthonormal basis of the one-electron Hilbert space.
While we use a set of N one-electron orbitals ϕn(x) to define an N -electron Slater determi-
nant Φα1,...,αN (x), this representation is not unique: Any unitary transformation among the N
occupied orbitals will not change the determinant (up to a phase). It is thus sufficient to give
the N -dimensional subspace spanned by the orbitals ϕ1, . . . , ϕN in the single-electron Hilbert
space. The projector to this space is the one-body density matrix

Γ (1)(x, x′) = N

∫
dx2 · · · dxN Φ(x, x2, . . . , xN)Φ(x′, x2, . . . , xN) . (8)

To see this, we expand the Slater determinant along its first row

Φα1···αN (x1, . . . , xN) =
1√
N

N∑
n=1

(−1)1+n ϕαn(x1)Φαi 6=n(x2, . . . , xN) , (9)

where Φαi 6=n(x2, . . . , xN) is the determinant with the first row and the n-th column removed,
which can be written as N−1-electron Slater determinants with orbital αn removed. Inserting
this into (8) we find

Γ
(1)
Φ (x, x′) =

N∑
n=1

ϕαn(x)ϕαn(x′) , (10)

which is the expansion of the one-body density matrix in eigenfunctions (natural orbitals), with
eigenvalues (natural occupation numbers) either one or zero. Due to the degeneracy of the nat-
ural occupation numbers the natural orbitals are not unique. Any many-electron wave function
Ψ(x) with the same one-body density matrix Γ (1)

Φ equals the Slater determinant Φ(x) up to a
phase, i.e., |〈Ψ |Φ〉| = 1. We can generalize this procedure and calculate higher order density
matrices by introducing the generalized Laplace expansion

Φα1···αN (x) =
1√(
N
p

) ∑
n1<···<np

(−1)1+
∑
i ni Φαn1 ···αnp (x1, . . . , xp)Φαi6∈{n1,...,np}(xp+1, . . . , xN),

which is obtained by writing the permutation of all N indices as a permutation of N−p indices
and the remaining p indices separately summing over all distinct sets of p indices. This allows
us to evaluate arbitrary matrix elements and higher order density matrices [4, 5]. But as can be
seen from the above expansion, the expressions very quickly get quite cumbersome. Fortunately
there is a representation that is much better suited to handling antisymmetric wave functions. It
is called second quantization.
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2 Second quantization

The idea behind the second quantized approach to writing many-body wave functions is remark-
ably simple: When writing Slater determinants in the form (4) we are working in a real-space
basis. It is, however, often simpler to consider abstract states: Instead of a wave function ϕα(x),
we write a Dirac state |α〉. Second quantization allows us to do the same for Slater determinants.
Let us consider a Slater determinant for two electrons, one in state ϕα(x), the other in state
ϕβ(x). It is simply the antisymmetrized product of the two states

Φαβ(x1, x2) =
1√
2

(
ϕα(x1)ϕβ(x2)− ϕβ(x1)ϕα(x2)

)
. (11)

This expression is quite cumbersome because we explicitly specify the coordinates. We can try
to get rid of the coordinates by defining a two-particle Dirac state

|α, β〉 :=
1√
2

(
|α〉|β〉 − |β〉|α〉

)
.

While the expression is already simpler, we still have to keep track of the order of the particles
by specifying the position of the kets. The idea of second quantization is to specify the states
using operators

|α, β〉 = c†βc
†
α|0〉. (12)

Now the order of the particles is specified by the order of the operators. To ensure the antisym-
metry of the wave function the operators have to change sign when they are reordered

|α, β〉 = c†βc
†
α|0〉 = −c†αc

†
β|0〉 = −|β, α〉 . (13)

2.1 Creation and annihilation operators

To arrive at the formalism of second quantization we postulate a set of operators that have
certain reasonable properties. We then verify that we can use these operators to represent Slater
determinants. But first we consider a few simple states to motivate what properties the new
operators ought to have.
To be able to construct many-electron states, we start from the simplest such state: |0〉 the
vacuum state with no electron, which we assume to be normalized 〈0|0〉 = 1. Next we introduce
for each single-electron state |α〉 an operator c†α such that c†α|0〉 = |α〉. We call them creation
operators since they add an electron (in state α) to the state that they act on: in c†α|0〉 the creation
operator adds an electron to the vacuum state (N=0), resulting in a single-electron state (N=1).
Applying another creation operator produces a two-electron state c†βc

†
α|0〉, (N=2). To ensure

the antisymmetry of the two electron state, the product of creation operators has to change sign
when they are reordered: c†αc

†
β = −c†βc†α. This is more conveniently written as {c†α, c

†
β} = 0 by

introducing the anti-commutator

{A, B} := AB +BA . (14)
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As we have seen, the simplest state we can produce with the creation operators is the single-
electron state |α〉 = c†α|0〉. When we want to calculate its norm, we have to consider the adjoint
of c†α|0〉, formally obtaining 〈α|α〉 = 〈0|cαc†α|0〉, or, more generally, 〈α|β〉 = 〈0|cαc

†
β|0〉. This

implies that cα, the adjoint of a creation operator, must remove an electron from the state,
otherwise the overlap of cαc

†
β|0〉 with the vacuum state 〈0| would vanish. We therefore call the

adjoint of the creation operator an annihilation operator. We certainly cannot take an electron
out of the vacuum state, so cα|0〉 = 0. To obtain the overlap of one-electron states we postulate
the anticommutation relation {cα, c

†
β} = 〈α|β〉, giving 〈0|cαc

†
β|0〉 = 〈0|{cα, c†β} − c

†
βcα|0〉 =

〈α|β〉. For completeness, taking the adjoint of the anticommutation relation for the creation
operators, we obtain the corresponding anticommutator of the annihilators: {cα, cβ} = 0.
Thus, we are led to define the vacuum state |0〉 and the set of operators cα related to single-
electron states |α〉 with the properties

cα|0〉 = 0
{
cα, cβ

}
= 0 =

{
c†α, c

†
β

}
〈0|0〉 = 1

{
cα, c

†
β

}
= 〈α|β〉

(15)

As a direct consequence we obtain the Pauli principle in the form cαcα = 0 = c†αc
†
α.

We note that the creators transform in the same way as the single-electron states they represent

|α̃i〉 =
∑
µ

|αµ〉Uµi ; c̃†α̃i |0〉 =
∑
µ

c†αµ |0〉Uµi =

(∑
µ

c†αµUµi

)
|0〉. (16)

The creators and annihilators are clearly not operators in a Hilbert space, but transfer states from
an N -electron to a N±1-electron Hilbert space, i.e., they are operators defined on Fock space.
It is also remarkable that the mixed anti-commutator is the only place where the orbitals that
distinguish different operators enter.
To make contact with the notation of first quantization, we introduce the field operators Ψ̂ †(x),
with x = (r, σ), that create an electron of spin σ at position r, i.e., in state |x〉 = |r, σ〉. Given a
complete, orthonormal set of orbitals {ϕn}, we can expand |x〉

Ψ̂ †(x)|0〉 = |x〉 =
∑
n

|ϕn〉〈ϕn|x〉 =
∑
n

c†ϕn|0〉〈ϕn|x〉 (17)

from which we obtain

Ψ̂ †(x) =
∑
n

〈x|ϕn〉 c†ϕn =
∑
n

ϕn(x) c†ϕn . (18)

The anticommutators then follow from (15) for an orthonormal and complete set, e.g.,{
Ψ̂(x), Ψ̂ †(x′)

}
=
∑
n,m

〈x|ϕn〉
{
cϕn , c

†
ϕm

}︸ ︷︷ ︸
=δn,m

〈ϕm|x′〉 =
∑
n

〈x|ϕn〉〈ϕn|x′〉 = 〈x|x′〉 = δ(x− x′),

resulting in the anticommutation relations for the field operators{
Ψ̂(x), Ψ̂(x′)

}
= 0 =

{
Ψ̂ †(x), Ψ̂ †(x′)

}
and

{
Ψ̂(x), Ψ̂ †(x′)

}
= 〈x|x′〉. (19)



Second quantization 1.7

We can, of course, expand the field operators also in a non-orthogonal set of orbitals {|χi〉}, as
long as it is complete,

∑
i,j |χi〉(S−1)ij〈χj| = 1, where Sij = 〈χi|χj〉 is the overlap matrix

Ψ̂ †(x) =
∑
i,j

c†i (S−1)ij 〈χj|x〉. (20)

Conversely, given any single-electron wave functions in real space ϕ(x), we can express the
corresponding creation operator in terms of the field operators

c†ϕ =

∫
dxϕ(x) Ψ̂ †(x). (21)

Its anticommutator with the field annihilator just gives back the single-electron wave function{
Ψ̂(x), c†ϕ

}
=

∫
dx′ ϕ(x′)

{
Ψ̂(x), Ψ̂ †(x′)

}
= ϕ(x) . (22)

2.2 Representation of Slater determinants

We have now all the tools in place to write the Slater determinant (4) in second quantization,
using the creation operators to specify the occupied orbitals and the field operators to give the
coordinates for the real-space representation:

Φα1α2...αN (x1, x2, . . . , xN) =
1√
N !

〈
0
∣∣ Ψ̂(x1)Ψ̂(x2) . . . Ψ̂(xN) c†αN . . . c

†
α2
c†α1

∣∣0〉. (23)

Note how writing the Slater determinant as an expectation value of annihilation and creation
operators nicely separates the coordinates on the left from the orbitals on the right. This is just
the desired generalization of the Dirac notation ϕ(x) = 〈x|ϕ〉.
Not surprisingly, the proof of (23) is by induction. As a warm-up we consider the case of a
single-electron wave function (N=1). Using the anticommutation relation (22), we see that〈

0
∣∣ Ψ̂(x1) c†α1

∣∣0〉 =
〈
0
∣∣ϕα1(x1)− c†α1

Ψ̂(x1)
∣∣0〉 = ϕα1(x1) . (24)

For the two-electron state N = 2, we anticommute Ψ̂(x2) in two steps to the right〈
0
∣∣ Ψ̂(x1)Ψ̂(x2) c†α2

c†α1

∣∣0〉 =
〈
0
∣∣ Ψ̂(x1)

(
ϕα2(x2)− c†α2

Ψ̂(x2)
)
c†α1

∣∣0〉
=

〈
0
∣∣ Ψ̂(x1)c†α1

∣∣0〉ϕα2(x2)−
〈
0
∣∣ Ψ̂(x1)c†α2

Ψ̂(x2)c†α1

∣∣0〉
= ϕα1(x1)ϕα2(x2)− ϕα2(x1)ϕα1(x2) . (25)

We see how anticommuting automatically produces the appropriate signs for the antisymmetric
wave function. Dividing by

√
2, we obtain the desired two-electron Slater determinant.

The general case of an N -electron state works just the same. Anti-commuting Ψ̂(xN) all the
way to the right produces N terms with alternating sign〈

0
∣∣ Ψ̂(x1) · · · Ψ̂(xN−1)Ψ̂(xN) c†αN c

†
αN−1

· · · c†α1

∣∣0〉 =

+
〈
0
∣∣ Ψ̂(x1) · · · Ψ̂(xN−1) c†αN−1

· · · c†α1

∣∣0〉 ϕαN (xN)

−
〈
0
∣∣ Ψ̂(x1) · · · Ψ̂(xN−1)

∏
n6=N−1 c

†
αn

∣∣0〉 ϕαN−1
(xN)

...
(−1)N−1

〈
0
∣∣ Ψ̂(x1) · · · Ψ̂(xN−1) c†αN · · · c

†
α2

∣∣0〉 ϕα1 (xN) .



1.8 Erik Koch

Using (23) for the N−1-electron states, this is nothing but the Laplace expansion of

D =

∣∣∣∣∣∣∣∣∣∣
ϕα1(x1) ϕα2(x1) · · · ϕαN (x1)

ϕα1(x2) ϕα2(x2) · · · ϕαN (x2)
...

... . . . ...
ϕα1(xN) ϕα2(xN) · · · ϕαN (xN)

∣∣∣∣∣∣∣∣∣∣
along the N th row. Dividing by

√
N ! we see that we have shown (23) for N -electron states,

completing the proof by induction.
Given this representation of Slater determinants it is easy to eliminate the coordinates so we can
work with N -electron states rather than N -electron wave functions—just as in Dirac notation.
In particular we can rewrite the basis of Slater determinants (6) into a basis of product states{

c†αN · · · c
†
α1
|0〉
∣∣ α1 < · · · < αN

}
, (26)

which allows us to express any N -electron state as

|Ψ〉 =
∑

α1<···<αN

aα1,...,αN c
†
αN
· · · c†α1

|0〉. (27)

2.3 Representation of n-body operators

To work with N -electron states rather than Slater determinants, we also have to rewrite the
N -electron operators M(x) appropriately. This is easily done by incorporating the coordinates
that we have separated from the Slater determinants into the operators such that the expectation
values remain unchanged. This is, again, analogous to the Dirac formalism:∫

dxϕn(x)M(x)ϕm(x) = 〈ϕn|
∫
dx |x〉M(x)〈x|︸ ︷︷ ︸

=:M̂

ϕm〉 = 〈ϕn|M̂ |ϕm〉. (28)

For N -electron Slater determinants this becomes∫
dx1 · · · dxN Φβ1···βN (x1, · · · , xN)M(x1, . . . , xN)Φα1···αN (x1, · · · , xN)

=

∫
dx1· · · dxN〈0|cβ1· · · cβN Ψ̂

†(xN)· · · Ψ̂ †(x1)|0〉M(x1, . . . , xN)〈0|Ψ̂(x1)· · · Ψ̂(xN)c†αN· · · c
†
α1
|0〉

=
〈
0
∣∣ cβ1 · · · cβN M̂ c†αN · · · c

†
α1

∣∣0〉
with the representation of the n-body operator in terms of field operators

M̂ =
1

N !

∫
dx1 · · ·xN Ψ̂ †(xN) · · · Ψ̂ †(x1)M(x1, · · · , xN) Ψ̂(x1) · · · Ψ̂(xN) . (29)

Note that this particular form of the operator is only valid when applied to N -electron states,
since we have used that the N annihilation operators bring us to the zero-electron space, where
|0〉〈0| = 10. Keeping this in mind, we can work entirely in terms of our algebra (15).
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To see what (29) means we look, in turn, at the different n-body parts of M(x), (2):

M(x) = M (0) +
∑
i

M (1)(xi) +
∑
i<j

M (2)(xi, xj) +
∑
i<j<k

M (3)(xi, xj, xk) + · · · (30)

We start with the simplest case, the zero-body operator, which, up to a trivial prefactor, is
M (0)(x1, · · · , xN) = 1. Operating on an N -electron state, it gives

M̂ (0) =
1

N !

∫
dx1dx2 · · ·xN Ψ̂ †(xN) · · · Ψ̂ †(x2)Ψ̂ †(x1) Ψ̂(x1)Ψ̂(x2) · · · Ψ̂(xN)

=
1

N !

∫
dx2 · · ·xN Ψ̂ †(xN) · · · Ψ̂ †(x2) N̂ Ψ̂(x2) · · · Ψ̂(xN)

=
1

N !

∫
dx2 · · ·xN Ψ̂ †(xN) · · · Ψ̂ †(x2) 1 Ψ̂(x2) · · · Ψ̂(xN)

...

=
1

N !
1 · 2 · · · N = 1 , (31)

where we have used that the operator∫
dx Ψ̂ †(x)Ψ̂(x) = N̂

counts the number of electrons: Applied to the vacuum state it gives N̂ |0〉 = 0, while each
creation operator increases the count by one: N̂c†n = c†n(N̂+1), which follows from

[N̂ , c†n] =

∫
dx [Ψ̂ †(x)Ψ̂(x), c†n] =

∫
dx Ψ̂ †(x) {Ψ̂(x), c†n} =

∫
dx Ψ̂ †(x)ϕn(x) = c†n, (32)

where we have used the simple relation [AB, C] = A{B, C} − {A, C}B. Adjoining this
relation gives a minus sign, i.e., annihilators reduce the count by one: N̂cn = cn(N̂−1). Thus,
commuting N̂ through a general product state, we obtain for each creation operator that we
encounter a copy of the state, while for each annihilator we obtain minus that state, giving in
total the original state times the difference in the number of creation and annihilation operators.

Remarkably, while we started from an operator acting on N -electron states, the resulting opera-
tor in second quantized form is independent of the number of electrons. We will see that this is
an important general feature of operators in second quantization which makes working in Fock
spaces amazingly simple.

We note that (31) just means that the overlap of two Slater determinants (7) is equal to that of
the corresponding product states∫

dx Φα1,...,αN (x)Φβ1,...,βN (x) =
〈
0
∣∣ cα1
· · · cαN c†βN · · · c

†
β1

∣∣0〉. (33)
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2.3.1 One-body operators

Next we consider one-body operators
∑

jM
(1)(xj)

M̂ (1) =
1

N !

∫
dx1 · · · dxN Ψ̂ †(xN) · · · Ψ̂ †(x1)

∑
j

M (1)(xj) Ψ̂(x1) · · · Ψ̂(xN)

=
1

N !

∑
j

∫
dxj Ψ̂

†(xj)M
(1)(xj) (N−1)! Ψ̂(xj)

=
1

N

∑
j

∫
dxj Ψ̂

†(xj)M
(1)(xj) Ψ̂(xj)

=

∫
dx Ψ̂ †(x) M (1)(x) Ψ̂(x) (34)

Here we have first anticommuted Ψ̂ †(xj) all the way to the left and Ψ̂(xj) to the right. Since
these take the same numbers of anticommutations, there is no sign involved. In between these
field operators we are left with a zero-body operator for N−1 electrons, producing, when M̂ (1)

acts on an N -electron state, a factor of (N−1)!. Again we notice that we obtain an operator that
no longer depends on the number of electrons, i.e., that is valid in the entire Fock space.
Expanding the field-operators in a complete orthonormal set Ψ̂(x) =

∑
n ϕn(x) cn gives

M̂ (1) =
∑
n,m

∫
dxϕn(x)M(x)ϕm(x) c†ncm =

∑
n,m

〈ϕn|M (1)|ϕm〉 c†ncm =
∑
n,m

c†nM
(1)
nm cm. (35)

The matrix elementsM (1)
nm = 〈ϕn|M (1)|ϕm〉 transform like a single-electron matrixM (1): From

(16) and writing the annihilation operators as a column vector c we see that

M̂ (1) = c†M (1) c = c†U † UM (1)U † Uc = c̃† M̃ (1) c̃ . (36)

Once we have arrived at the representation in terms of orbitals, we can restrict the orbital basis
to a non-complete set. This simply gives the operator in the variational (Fock) subspace spanned
by the orbitals.
We note that the expression (35) not only works for local operators but also for differential
operators like the momentum or kinetic energy: we have taken care not to exchange the order
of M (1) and one of its field operators. We can write truly non-local operators in a similar way.
As an example, the one-body density operator is given by

Γ̂ (1)(x;x′) = Ψ̂ †(x)Ψ̂(x′) (37)

so that one coordinate is not integrated over, rather setting it to x in the bra and x′ in the ket. In
an orthonormal basis it becomes

Γ̂ (1)(x;x′) =
∑
n,m

ϕn(x)ϕm(x′) c†ncm . (38)
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2.3.2 Two-body operators

For the two-body operators
∑

i<jM
(2)(xi, xj) we proceed in the familiar way, anti-commuting

first the operators with the coordinates involved in M (2) all the way to the left and right, respec-
tively. This time we are left with a zero-body operator for N−2 electrons:

M̂ (2) =
1

N !

∫
dx1 · · · dxN Ψ̂ †(xN) · · · Ψ̂ †(x1)

∑
i<j

M (2)(xi, xj) Ψ̂(x1) · · · Ψ̂(xN)

=
1

N !

∑
i<j

∫
dxidxj Ψ̂

†(xj)Ψ̂
†(xi)M

(2)(xi, xj) (N−2)! Ψ̂(xi)Ψ̂(xj)

=
1

N(N−1)

∑
i<j

∫
dxidxj Ψ̂

†(xj)Ψ̂
†(xi)M

(2)(xi, xj) Ψ̂(xi)Ψ̂(xj)

=
1

2

∫
dx dx′ Ψ̂ †(x′) Ψ̂ †(x) M (2)(x, x′) Ψ̂(x) Ψ̂(x′)

Expanding in an orthonormal basis, we get

M̂ (2) =
1

2

∑
n,n′,m,m′

∫
dxdx′ ϕn′(x′)ϕn(x)M (2)(x, x′)ϕm(x)ϕm′(x

′) c†n′c
†
ncmcm′

=
1

2

∑
n,n′,m,m′

〈ϕnϕn′ |M (2)|ϕmϕm′〉 c†n′c
†
ncmcm′ (39)

where the exchange of the indices in the second line is a consequence of the way the Dirac state
for two electrons is usually written: first index for the first coordinate, second index for the
second. A more natural choice would be to exchange the order in the bra, reflecting that taking
the adjoint of the operators changes their order. Either way, Mnn′,mm′ = 〈ϕnϕn′|M (2)|ϕmϕm′〉
transforms like a fourth-order tensor: Transforming to a different basis (16) gives

M̃
(2)
νν′,µµ′ =

∑
n,n′,m,m′

U †νnU
†
ν′n′Mnn′,mm′UmµUm′µ′ . (40)

Form the symmetry of the two-body operator M (2)(x, x′) = M (2)(x′, x) follows Mnn′,mm′ =

Mn′n,m′m. Moreover, Mnn,mm′ will not contribute to M̂ (2) since c†nc
†
n = {c†n, c†n}/2 = 0, and

likewise for Mnn′,mm.
Note that the representation (39) is not quite as efficient as it could be: The terms with n and n′

and/orm andm′ exchanged connect the same basis states. Collecting these terms by introducing
an ordering of the operators and using the symmetry of the matrix elements we obtain

M̂ (2) =
∑

n′>n, m′>m

c†n′c
†
n

(
M

(2)
nn′,mm′ −M

(2)
n′n,mm′

)
︸ ︷︷ ︸

=:M̆
(2)

nn′,mm′

cmcm′ . (41)

Since the states {c†n′c†n|0〉 |n′ > n} form a basis of the two-electron Hilbert space, considering
nn′ as the index of a basis state, the M̆ (2)

nn′,mm′ form a two-electron matrix M̆ (2).
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The procedure of rewriting operators in second quantization obviously generalizes to observ-
ables acting on more than two electrons in the natural way.
We note that, while we started from a form of the operators (30) that was explicitly formulated
in an N -electron Hilbert space, the results (31), (35), and (39) are of the same form no matter
what value N takes. Thus these operators are valid not just on some N -electron Hilbert space,
but on the entire Fock space. This is a particular strength of the second-quantized formalism.

2.4 Transforming the orbital basis

We noted in (16) that the creators transform in the same way as the orbitals they represent

|βi〉 = U |αi〉 =
∑
j

|βj〉〈αj|αi〉 =
∑
µ

|αµ〉 〈αµ|U |αi〉︸ ︷︷ ︸
=:Uµi

; c†βi =
∑
µ

c†αµ Uµi , (42)

so the “operators” really transform like states. Writing the transformation matrix as U = eM ,
where M is anti-Hermitian, M † = −M , when U is unitary, but can be any matrix when U is
merely invertible, we can write the basis transformation in a form appropriate for operators:

c†βi = ec
†Mc c†αµ e

−c†Mc . (43)

To see this, we use the Baker-Campbell-Hausdorff formula in the form

eλAB e−λA = B + λ [A, B] +
λ2

2!

[
A, [A, B]

]
+
λ3

3!

[
A,
[
A, [A, B]

]]
+ · · · , (44)

where the expansion coefficients follow by taking the derivatives of the left hand side at λ = 0,
together with the commutator [c†αµcαν , c

†
ακ ] = c†αµ δν,κ, from which we obtain for the repeated

commutators[∑
µ,ν

Mµνc
†
αµcαν ,

∑
κ

c†ακ
(
Mn
)
κi

]
=
∑
µνκ

c†αµMµν δν,κ
(
Mn
)
κi

=
∑
µ

c†αµ
(
Mn+1

)
µi
. (45)

To keep the derivation simple, we have chosen to transform an operator from the orthonormal
basis that we also used to write the exponential operator. Being linear, the transform works, of
course, the same for an arbitrary operator.
Using this form of the basis transformation and noticing that e−c†Mc|0〉 = |0〉, we immediately
see that acting with the exponential of a one-body operator on a product state results in another
product state

ec
†Mc

∏
c†αn
∣∣0〉 =

∏
ec
†Mc c†αne

−c†Mc
∣∣0〉 =

∏
c†βn
∣∣0〉 . (46)

This is, e.g., used when working in the interaction picture. Anticommutators with transformed
operators, (42), are simply

{
cαj , e

−c†Mc c†αi e
−c†Mc

}
= 〈αj|eM |αi〉.

Annihilation operators, being the adjoint of the creators, transform in just the expected way

cβi = e−c
†M†c cαµ e

c†M†c , (47)

which means that for unitary transformations, where M is anti-Hermitian, creators and anni-
hilators transform in the same way. Note that in the imaginary-time formalism the annihilators
are, via analytic continuation, chosen to transform in the same way as the creators, making them
different from the adjoint of the creators.
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3 Exact diagonalization

We have worked, so far, with complete, i.e., infinite bases. This is, of course, not possible
in actual computer simulations, where we have to confine ourselves to finite basis sets. Such
calculations on subspaces are based on the variational principle.

3.1 Variational principles

The variational principle and the Schrödinger equation are equivalent. Consider the energy
expectation value as a wave-function functional

E[Ψ ] =
〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

. (48)

Its variation is

E[Ψ+δΨ ] = E[Ψ ] +
〈δΨ |H|Ψ〉+ 〈Ψ |H|δΨ〉

〈Ψ |Ψ〉
− 〈Ψ |H|Ψ〉 〈δΨ |Ψ〉+ 〈Ψ |δΨ〉

〈Ψ |Ψ〉2
+O2. (49)

The first-order term vanishes for H|Ψ〉 = E[Ψ ] |Ψ〉, which is the Schrödinger equation. Since
the eigenfunctions

H|Ψn〉 = En|Ψ〉 , (50)

can be chosen to form an orthonormal basis, we can expand any wavefunction as

|Ψ〉 =
∑
n

|Ψn〉 〈Ψn|Ψ〉 (51)

and determine, as long as 〈Ψ |Ψ〉 6= 0, its energy expectation value

〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

=

∑
m,n〈Ψ |Ψm〉〈Ψm|H|Ψn〉〈Ψn|Ψ〉∑
m,n〈Ψ |Ψm〉〈Ψm|Ψn〉〈Ψn|Ψ〉

=

∑
nEn

∣∣〈Ψn|Ψ〉∣∣2∑
n

∣∣〈Ψn|Ψ〉∣∣2 . (52)

Since by definition no eigenenergy can be lower than the ground state energy E0, we immedi-
ately see that the energy expectation value can never drop below the ground state energy

〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

=

∑
nEn

∣∣〈Ψn|Ψ〉∣∣2∑
n

∣∣〈Ψn|Ψ〉∣∣2 ≥
∑

nE0

∣∣〈Ψn|Ψ〉∣∣2∑
n

∣∣〈Ψn|Ψ〉∣∣2 = E0 . (53)

We can use the same argument to generalize this variational principle: Assume we have ar-
ranged the eigenenergies in ascending order, E0 ≤ E1 ≤ · · · , then the energy expectation value
for a wavefunction that is orthogonal to the n lowest eigenstates, can not drop below En

〈Ψ⊥n|H|Ψ⊥n〉
〈Ψ⊥n|Ψ⊥n〉

≥ En if 〈Ψi|Ψ⊥n〉 = 0 for i = 0, . . . , n−1. (54)

This generalized variational principle is, of course, only of practical use if we know something
about the eigenstates, e.g., when we can use symmetries to ensure orthogonality.
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For an ab-initio Hamiltonian of N electrons in the field of nuclei of charge Zα at positionRα,

H = −1

2

∑
i

∆i −
∑
i,α

Zα
|ri−Rα|

+
∑
i<j

1

|ri−rj|
+
∑
α<β

ZαZβ
|Rα−Rβ|

, (55)

the Schrödinger equation is a partial differential equation. In second quantization it becomes
a linear-algebra problem: We introduce an orbital basis set {ϕk | k}, which for simplicity we
assume here to be orthonormal, from which we construct an orthonormal basis of N -electron
product states, {Φk1,...,kN | k1< · · ·<kN}. To simplify the notation we sort the basis states, e.g.,
lexicographically in the orbital indices k = (k1, . . . , kN) and define the row vector of basis
states |Φ〉 :=

(
|Φ1〉, |Φ2〉, . . .

)
. The expansion of a state |Ψ〉 in this basis can then be written as

|Ψ〉 =
∑

k1<···<kN

ak1,...,kN |Φk1,...,kN 〉 =
∑
i

ai |Φi〉 = |Φ〉a , (56)

where a is the vector of expansion coefficients. Likewise we can write the Schrödinger equation
as a matrix eigenvalue problem

Ha = 〈Φ|Ĥ|Φ〉a =

〈Φ1|Ĥ|Φ1〉 〈Φ1|Ĥ|Φ2〉 · · ·
〈Φ2|Ĥ|Φ1〉 〈Φ2|Ĥ|Φ2〉 · · ·

...
... . . .


a1

a2

...

 = E

a1

a2

...

 = Ea . (57)

From the eigenvectors of the matrixH we easily recover the eigenstates of the Hamiltonian

Han = Enan ; Ĥ|Ψn〉 = En|Ψn〉 with |Ψn〉 = |Φ〉an . (58)

Unfortunately, for an ab-initio Hamiltonian like (55) we need an infinite orbital basis set, so that
the Hamiltonian matrixH is infinite dimensional. A pragmatic approach to allow for computer
simulations is to simply restrict the calculation to a finite basis |Φ̃〉 :=

(
|Φ̃1〉, . . . , |Φ̃L̃〉

)
, i.e.,

work with a finite matrix H̃ := 〈Φ̃|Ĥ|Φ̃〉 of dimension L̃. The crucial question is then how the
eigenvectors

H̃ãn = Ẽnãn ; |Ψ̃n〉 := |Φ̃〉 ãn (59)

are related to those of H . The answer is surprisingly simple [6]: The eigenvalues of H̃ , ordered
as Ẽ0 ≤ Ẽ1 ≤ · · · ≤ ẼL̃−1, are variational with respect to those of H:

En ≤ Ẽn for n ∈ {0, . . . , L̃−1} . (60)

To show this, we construct a state in span
(
|Ψ̃0〉, . . . , |Ψ̃n〉

)
, which by construction has an energy

expectation value ≤ Ẽn, that is orthogonal to the exact eigenstates |Ψ0〉, . . . , |Ψn−1〉, so that by
the generalized variational principle its expectation value is ≥ En. Being the non-zero solution
of n−1 linear equations with n variables, such a state certainly exists, hence En ≤ Ẽn.
To get reliable results, we simply have to systematically increase the basis until the change in
the desired eigenvalues becomes smaller than the accuracy required by the physical problem.
The art is, of course to devise clever basis sets such that this is achieved already for bases of
low dimensions.
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The convergence of the matrix eigenvalues with increasing basis size is surprisingly regular. Let
us extend our original basis of L̃ states by an additional L− L̃ states. Then, repeating the above
argument with the L-dimensional problem taking the role of Ĥ , we obtain (60) with En being
the eigenvalues of the L-dimensional Hamiltonian matrixH . Being finite, we can use the same
argument for −H , obtaining

− EL−i ≤ −ẼL̃−i for i ∈ {1, . . . , L̃}. (61)

Taking the two inequalities together we obtain

En ≤ Ẽn ≤ En+(L−L̃) for n ∈ {0, . . . , L̃−1}. (62)

For the special caseL = L̃+1 of adding a single basis state, this is the Hylleraas-Undheim/Mac-
Donald nesting property for eigenvalues in successive approximations

E1 ≤ Ẽ1 ≤ E2 ≤ Ẽ2 ≤ · · · ≤ ẼL ≤ EL+1 . (63)

3.2 Matrix eigenvalue problem

For practical calculations we have to set up the Hamiltonian matrix H̃ = 〈Φ̃|Ĥ|Φ̃〉 and the
state vectors ã for the chosen basis. This is particularly easy for a basis of Slater determinants
constructed from a basis set of K orbitals

{
ϕk |k = 0, . . . , K−1

}
. The basis states are then the

N -electron product states of |Φk1,...,kN 〉 = c†kN · · · c
†
k1
|0〉 with k1 < · · · kN . We can write this

more computer friendly as

|nK−1, . . . , n0〉 =
K−1∏
k=0

(
c†k
)nk |0〉 (64)

which is the occupation number representation with nk ∈ {0, 1} and
∑
nk = N . It is natural to

interpret the vector of occupation numbers as the binary representation of the integer
∑

k 2nk .
This implies a natural ordering of the basis functions |Φl〉. For the simple case of K=4 orbitals
and N=2 electrons we obtain i (n3, n2, n1, n0) state l

0 0000
1 0001
2 0010
3 0011 c†1c

†
0|0〉 = |Φ1〉 1

4 0100
5 0101 c†2c

†
0|0〉 = |Φ2〉 2

6 0110 c†2c
†
1|0〉 = |Φ3〉 3

7 0111
8 1000
9 1001 c†3c

†
0|0〉 = |Φ4〉 4

10 1010 c†3c
†
1|0〉 = |Φ5〉 5

11 1011
12 1100 c†3c

†
2|0〉 = |Φ6〉 6

13 1101
14 1110
15 1111
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The bit representation of the basis states also simplifies setting up the Hamiltonian matrix.
Given the Hamiltonian in second quantization

Ĥ =
∑
n,m

Tnm c
†
ncm +

∑
n′>n,m′>m

(
Unn′,mm′ − Un′n,mm′

)︸ ︷︷ ︸
=Ŭnn′,mm′

c†n′c
†
ncmcm′ (65)

the matrix element 〈Φl|Ĥ|Φ′l〉, with |Φl′〉 = c†k′N
· · · c†l′1|0〉, is given by∑

n,m

Tnm〈0|cl1 · · · clN c
†
ncm c

†
l′N
· · · c†l′1|0〉+

∑
n′>n
m′>m

Ŭnn′,mm′〈0|cl1 · · · clN c
†
n′c
†
ncmcm′ c

†
l′N
· · · c†l′1|0〉.

Anticommuting the operators coming from the operators, the matrix elements become overlaps
of N+1 and N+2-electron product states, which, by (33) and (7), are just the determinants of
the overlap matrices of the corresponding orbitals. When Ĥ is written in the same orbitals as
the |Φl〉, the overlap matrices simplify to permutation matrices with determinant ±1. In the
occupation number representation, calculating this Fermi sign reduces to counting set bits. As
an example we consider a simple hopping of an electron:

c†6c2|Φl(181)〉 = c†6c2 c
†
7c
†
5c
†
4c
†
2c
†
0|0〉

= (−1)3c†6c
†
7c
†
5c
†
4c2c

†
2c
†
0|0〉

= (−1)3c†6c
†
7c
†
5c
†
4

(
1− c†2c2

)
c†0|0〉

= (−1)3c†6c
†
7c
†
5c
†
4·c
†
0|0〉

= +|Φl(241)〉 = (−1)2c†7c
†
6c
†
5c
†
4·c
†
0|0〉

In the occupation number representation this becomes

?
10110101 = (−1)c 11110001 (66)

where c is the count of set bits between the positions the electron hop. Note that a dedicated
machine instruction, popcnt, for counting set bits is part of the x86 SSE4 instruction set, see
also [7]

3.3 Dimension of the Hilbert space and sparseness

Setting up basis states and Hamiltonian matrix in this way, we can easily solve the many-
body problem on our variational space by using any linear algebra library. This is the ex-
act diagonalization approach. As discussed above, it gives us variational estimates of the
ground and excited states. But there is a serious practical problem: the dimension of the
many-body Hilbert space. For an N -electron problem with a basis set of K orbitals there are
K (K−1) (K−2) · · · (K − (N−1)) ways of picking N indices out of K. Since we only use
one specific ordering of these indices, we have to divide by N ! to obtain the number of such
determinants:

dimH(N)
K =

K!

N !(K−N)!
=

(
K

N

)
. (67)
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Using Stirling’s formula we see that for an N -electron problem this increases faster than ex-
ponentially with the size K of the basis set. This is the problem we face when converging the
basis set for a finite system, e.g., a molecule. For solids we usually keep the number of orbitals
per lattice site fixed, but scale to the thermodynamic limit, increasing the system size M while
keeping the electron densityN/M fixed. Also here the Hilbert space increases faster than expo-
nentially. To give an impression of the problem we note that forN = 25 electrons andK = 100

orbitals the dimension already exceeds 1023.
For exact diagonalization the problem gets even worse. Assuming we have a machine with
1 TeraBytes = 240 Bytes of RAM available. Using single precision (4 bytes) for the matrix
elements, storing a matrix of dimension (240/4)1/2 = 524 288 would already use up all memory.
The dimension problem can be somewhat mitigated by exploiting symmetries: When the Hamil-
tonian commutes with the projection of the total spin, the number of up- and down-spin elec-
trons is conserved separately. The N -electron Hamiltonian is then block diagonal in the sectors
with fixed N↑ and N↓. The dimension of these blocks is significantly smaller than that of the
full N -electron Hilbert space. Using the same orbital basis for each spin

dimH(N↑,N↓)
2K =

(
K

N↑

)
×
(
K

N↓

)
. (68)

The Sz symmetry can be very easily implemented using the same ideas as introduced for the
general case: just carry bit representations for the up- and down-spin electrons separately. In
fact, when the total spin projection is conserved, we can distinguish electrons of different spin!
Still, the Hilbert space of the single-band, half-filled Hubbard model with just 12 sites has
dimension 853 776. Using further symmetries, if they exist, we could bring down the dimension
somewhat further, however at the expense of considerable and problem-specific effort.
The key to going to larger systems is the realization that the vast majority of the elements of the
Hamiltonian matrix is zero. This is quite easy to see. For the ab-initio Hamiltonian (55) with
electron-electron repulsion, matrix elements between configurations that differ in more than
two electron occupations vanish. Thus, for each configuration there may only be the diagonal
element, N × (K−1) hopping terms, and N(N−1)/2 × (K−N)(K−N−1)/2 pair-hopping
terms. Thus the fraction of non-zero matrix elements of H̃ to the total number is(

1 +N

(
1 +

N−1

2

(K−N−1)

2

)
(K−N)

)/(K
N

)
(69)

which, with increasing problem size, rapidly approaches zero. For the example of N = 25

electrons in K = 100 orbitals only 834 376 of the (over 1023) matrix elements per row can be
non-zero. This is the worst case. The sparsity of many-body Hamiltonians is even more pro-
nounced when working in a tight-binding basis with short-ranged hopping and local electron-
electron repulsion. Thus, many-body Hamiltonians are exceedingly sparse and the more so the
larger the problem. They are therefore ideally suited for approaches like the Lanczos method,
that are based on matrix-vector products, which for the sparse matrices scale close to linearly in
the matrix dimension.
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3.4 Non-interacting electrons

Even when considering a system of N non-interacting electrons we have to solve the large
matrix eigenvalue problem (57). Writing the non-interacting Hamiltonian in the basis used for
the CI expansion (56) we obtain

Ĥ =
∑
n,m

Hnm c
†
ncm ,

which, in general, has non-vanishing matrix elements between Slater determinants that differ
in at most one operator. But we can simplify things drastically by realizing that we can choose
any basis for the CI expansion. If we choose the eigenstates of the single-electron matrix Hnm

as basis, the second-quantized Hamiltonian is

Ĥ =
∑
n,m

εnδn,m c
†
ncm =

∑
n

εn c
†
ncn .

In this basis all off-diagonal matrix elements vanish and the CI Hamiltonian (57) is diagonal.
Thus all

(
K
N

)
eigenstates are Slater determinants

|Φn〉 = c†nN · · · c
†
n1
|0〉 with eigenenergy En =

∑
i

εni . (70)

This shows that choosing an appropriate basis for a CI expansion is crucial. A good general
strategy should thus be to solve the matrix problem (57) and at the same time look for the
basis set (of given size) that minimizes the variational energy. The simplest example, where the
many-body basis consists of a single Slater determinant, is the Hartree-Fock method.

4 Jordan-Wigner representation

The breakthrough in the development of quantum mechanics was Heisenberg’s insight that po-
sition and momentum of a particle must be represented by non-commuting matrices [8]. The
canonical commutation relations [r̂i, p̂j] = i~δij are the essence of quantization. In order to de-
velop a quantum theory of radiation, Dirac quantized a plane wave ~E~k(~r, t) = ~E~k ei(~k·~r−ωt) using
the same idea, describing the wave by its energy E and phase θ = −ωt, postulating matrices
with canonical commutation relation [E, t] = i~. In analogy to Heisenberg’s first quantization,
this step is called second quantization. It is quite plausible, considering the time-dependent
Schrödinger equation: i~ d

dt
= E. It follows from the commutation relation [E, e−iωt] =

~ω e−iωt that the operator eiθ adds a photon to the radiation field: Eeiθ = eiθ(E+~ω).
Instead of working with these operators directly, Dirac relates them to the expansion coefficient
bk of a many-photon wave function in the basis of plane waves and requires that |bk|2 = b†kbk
gives the occupation Nk=E/~ωk of mode k. This means that, in second quantization, the
expansion coefficients become operators, e.g.,

bk = e−iθkN
1/2
k and b†k = N

1/2
k eiθk (71)
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with b†kbk = Nk and commutation relation[
bk, b

†
k

]
= e−iθkNke

iθk −Nk = e−iθkeiθk(Nk+1)−Nk = 1 . (72)

Pascual Jordan realized [10] that the central part of Dirac’s argument is the commutation relation
[Nk, eiθk ] = eiθk , showing that eiθ acts as a ladder operator. To derive a similar description for
electrons, he implemented the Pauli principle by restricting occupations to the values 0 and 1.
In its eigenbasis, Nk can then be written as a 2×2 matrix

N =

(
1 0

0 0

)
=

1

2
(σz+1) (73)

so that the ladder operators, fulfilling
[
N, e±iθ

]
= ±e±iθ, take the form

eiθ =

(
0 1

0 0

)
=

1

2
(σx+iσy) and e−iθ =

(
0 0

1 0

)
=

1

2
(σx−iσy) (74)

and, using N2 = N ; N1/2 = N , the creators and annihilators (71) become

d† = N1/2 eiθ =

(
1 0

0 0

)(
0 1

0 0

)
=

(
0 1

0 0

)
=

1

2
(σx+iσy) (75)

d = e−iθN1/2 =

(
0 0

1 0

)(
1 0

0 0

)
=

(
0 0

1 0

)
=

1

2
(σx−iσy). (76)

The resulting Paulions do not fulfill a canonical commutation relation ([d†, d] = σz), instead
their anti-commutator is analogous to (72)

d d† + d†d =
{
d, d†

}
= 1 . (77)

Using S± = Sx± iSy = (σx± iσy)/2 and Sz = σz/2, we see from the simple mapping

paulion | 0 〉 | 1 〉 d† d N

spin-½ |↓ 〉 |↑ 〉 S+ S− Sz+1
2

(78)

that a paulions behaves just like a spin-½. Extending the analogy to more modes/spins, we
obtain the algebra of hard-core bosons [12], where operators involving different spins commute:
[di, dj] = 0 = [d†i , d

†
j], and [di, d

†
j] = 0 for i 6=j, while on the same site they fulfill the canonical

anticommutation relations{
di, d

†
i

}
= 1 and

{
di, di

}
= 0 =

{
d†i , d

†
i

}
. (79)

While hard-core bosons always fulfill the Pauli principle:
(
d†i
)2

= 0, they change character
under basis transformations. This is most easily seen in the case of two sites: Transforming
from d1 and d2 to d± = (d1 ± d2)/

√
2, we see that in the new basis the operators on different

modes need no longer commute[
d+, d

†
−
]

=
1

2

([
d1, d

†
1

]
−
[
d2, d

†
2

])
= N2 −N1 ,
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where we have used [A, B] = {A, B} − 2BA. The problem arises from the on-site anticom-
mutators mixing into the off-site commutators.
This can be fixed by requiring fermionic anticommutation relations for all operators{

ci, c
†
j

}
= δij and

{
ci, cj

}
= 0 =

{
c†i , c

†
j

}
(80)

which, just like the bosonic commutators, remain unchanged under (unitary) basis transforma-
tions c†βi =

∑
µ c
†
αµUµi:

[cβi , c
†
βj

]± =
∑
µ,ν

Uµi Uνj [cαµ , c
†
αν ]±︸ ︷︷ ︸

=δµ,ν

=
∑
µ

(U †)iµUµj = 1 . (81)

This was realized by Jordan and Wigner [11]. To make operators on different sites anticommute,
they introduced operators to keep track of the Fermi sign encountered, e.g., when calculating
hopping terms in the occupation number representation as in (66). The Fermi string operator∏i−1

k=1(−σkz ) collects a factor −1 for every occupied mode (i.e., spin up) below the mode the
ladder operator acts on

c†i = S+
i ⊗ (−2Szi−1)⊗ · · · ⊗ (−2Sz1) and ci = S−i ⊗ (−2Szi−1)⊗ · · · ⊗ (−2Sz1) (82)

Since
(
σz
)2

= 1 this does not change the anticommutation relations between operators on the
same sites, e.g., {

ci, c
†
i

}
=
{
S−i , S

+
i

}
⊗
(
−σi−1

z

)2 ⊗ · · · ⊗
(
−σ1

z

)2
= 1 (83)

while the operators on different sites now anticommute as desired, e.g., for i>j{
ci, c

†
j

}
= S−i ⊗

(
−σi−1

z

)
⊗ · · · ⊗

(
−σj+1

z

)
⊗
{
S+
j ,−σiz

}︸ ︷︷ ︸
=0

⊗
(
−σj−1

z

)2 ⊗ · · ·
(
−σ1

z

)2
= 0 .

(84)

Thus the operators ci and c†j fulfill canonical anticommutation relations, the form of which
remains unchanged under basis transformations, cf. (81). It follows from (83) that also for
paulions the hard-core constraint N2

i = Ni is invariant under basis transformations.
We note in passing that the Pauli principle has interesting consequences for the classical descrip-
tion of electrons first noticed by Rudolf Peierls [6]: Given the particle-wave duality in quantum
mechanics one may wonder why, in the classical limit, electrons behave not like radiation but
as particles. This may be seen as a consequence of the uncertainty relation between particle
number and phase following from [N, θ] = −i, which formed the basis of second quantization.
A classical wave has a well defined phase, which can only be obtained when the uncertainty in
N is large. This condition can be fulfilled for bosons in the limit of large average number of
photons. For fermions, however, the uncertainty in N is severely limited by the Pauli principle,
making it impossible to get a classical wave with well defined phase.
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Such arguments based on a phase operator, as well as the derivation of second quantization
sketched above have, however, to be taken with caution, as working with phase and angle op-
erators is not straightforward [13]. We can see that there is something not quite right with the
phase operator θ already from (74), which shows that eiθ is not unitary, i.e., that θ is not hermi-
tian. The same is true for the corresponding ladder operators in the bosonic case. The reason
is that the number of particles is bounded from below, which means that there is a lowest state
that is annihilated by e−iθ, so that this operator cannot have an inverse.
This problem no longer appears in relativistic quantum mechanics: the second-quantization
commutation relation [E, t] = i~ is related to the first-quantization [ri, pi] = i~δij by Lorentz
invariance. Correspondingly, the relativistic energy spectrum is not bounded from below, but
has hole states of negative energy.
Non-relativistic second quantization, on the other hand, does not need these commutation rela-
tions, since it is nothing but an extremely economical way of representing states. The bosonic
commutation relations are just those for the ladder operators a =

(
x/x0 + ix0px/~

)
/
√

2 of a
harmonic oscillator with x0 =

√
~/mω, for which they are, in fact, just a consequence of the

position-momentum commutator

i~ = [x, px] =
[ x0√

2

(
a+a†

)
, − i~√

2x0

(
a−a†

)]
= − i~

2

[
a+a†, a−a†

]
= +i~

[
a, a†

]
.

For fermions there is a simple relation between anN -electron wave function Ψ(x1, . . . , xN) and
the corresponding N -electron state |Ψ〉:

|Ψ〉 =
1√
N !

∫
dx1 · · · dxN Ψ(x1, . . . , xN) Ψ̂ †(xN) · · · Ψ̂ †(x1)|0〉 (85)

Ψ(x1, . . . , xN) =
1√
N !
〈0|Ψ̂(x1) · · · Ψ̂(xN)|Ψ〉 (86)

with unitarity relations

1

N !

∫
dx1 · · · dxN Ψ̂ †(xN) · · · Ψ̂ †(x1)|0〉〈0|Ψ̂(x1) · · · Ψ̂(xN) = 1N (87)

and

〈0|Ψ̂(x1) · · · Ψ̂(xN) Ψ̂ †(x′N) · · · Ψ̂ †(x′1)|0〉 =

∣∣∣∣∣∣∣
δ(x1−x′1) · · · δ(x1−x′N)

...
...

δ(xN−x′1) · · · δ(xN−x′N)

∣∣∣∣∣∣∣ (88)

so that normalizations are kept∫
dx1 · · · dxN

∣∣Ψ(x1, . . . , xN)
∣∣2 = 1 ⇔ 〈Ψ |Ψ〉 = 1 . (89)

Note that first-quantized wave functions involve factors 1/
√
N !, since the normalization integral

is over all permutations of the coordinates, while integration over a single domain x1< · · ·<xn
(assuming a suitable ordering of the coordinates) already contains all relevant information.
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4.1 Spins, hard-core bosons, and fermions

The equivalence between spin operators and hard-core bosons makes it possible to rewrite
spin-½ Heisenberg models like

J
∑
〈ij〉

~Si · ~Sj (90)

using Sx = (S++S−)/2, Sy = (S+−S−)/2i, and (78) as dictionary, into

J
∑
〈ij〉

1

2

(
d†idj + did

†
j

)
+
(
d†idi−1

2

)(
d†jdj−1

2

)
, (91)

where an (anti)ferromagnetic coupling of the spins corresponds to a (repulsive) attractive inter-
action between the hard-core bosons, while the transverse components of the spin interaction
corresponds to a hopping of paulions. Thus, e.g., the XY -model∑

〈ij〉

Jx S
x
i S

x
j + Jy S

y
i S

y
j (92)

maps to the non-interacting hard-core boson model∑
〈ij〉

Jx+Jy
4

(
d†idj + did

†
j

)
+
Jx−Jy

4

(
d†id
†
j + didj

)
. (93)

For the XX-model, Jx=Jy, there are just hopping terms, for the general XY -model there are
also pairing terms. The opposite limit, Jx=0=Jy, the Ising model, here with transverse field

J
∑
〈ij〉

Szi S
z
j +H

∑
i

Sxi (94)

seems at first to necessarily lead to a model of interacting hard-core bosons. We can, however,
easily rotate the spin-direction so that the external field points in z direction, to obtain a hard-
core boson model with only one-body terms

J

4

∑
〈ij〉

(
d†i+di

)(
d†j+dj

)
+H

∑
i

(
d†idi−1

2

)
. (95)

where the first term is just (93) with Jy = 0.
It is tempting to try to solve these non-interacting hard-core boson Hamiltonians by diagonal-
izing the one-body matrix and using a Bogoliubov transformation. As we have seen, however,
the commutation relations between paulions are not invariant under basis changes, so that the
eigenstates are not simple product states as in (70). This only works for fermions, i.e., when we
multiply the Pauli operators with Fermi strings to obtain fermions c†i = d†i

∏i−1
k=1(−1)nk with

nk = d†kdk or, equivalently, d†i = c†i
∏i−1

k=1(−1)nk with nk = c†kck. Since the sign operators act
on different modes than the creator/annihilator, they commute with the Fermi strings. Rewriting
the paulion models we thus get terms like

d†idj = c†i

i−1∏
k=1

(−1)nk
j−1∏
k=1

(−1)nkcj = c†i

max(i,j)−1∏
k=min(i,j)

(−1)nk cj . (96)
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so that the simple hopping or pairing terms are complicated by the product of spin operators.
Things remain simple, however, for terms involving the same site

d†idi = c†i

i−1∑
k=i

(−1)nkci = c†ici (97)

or adjacent sites (just consider the cases ni=0 or 1 separately)

d†i+1di = c†i+1(−1)nici = c†i+1ci and d†i+1d
†
i = c†i+1(−1)nic†i = −c†i+1c

†
i (98)

and, taking the adjoint

d†idi+1 =
(
d†i+1di

)†
= c†ici+1 and didi+1 =

(
d†i+1d

†
i

)†
= −cici+1 . (99)

For a one-dimensional spin chain, the XY -model or the Ising model with transverse field can
thus be written as a model of non-interacting fermions, e.g., (93) becomes∑

j

Jx+Jy
4

(
c†j+1cj + c†jcj+1

)
+
Jx−Jy

4

(
− c†j+1c

†
j − cjcj+1

)
(100)

and, since now we are dealing with non-interacting fermions, solved in the usual way [14].
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A Appendix

A.1 Atomic units

Practical electronic structure calculations are usually done in atomic units, a.u. for short. While
the idea behind the atomic units is remarkably simple, in practice there is often some confusion
when trying to convert to SI units. We therefore give a brief explanation.
The motivation for introducing atomic units is to simplify the equations. For example, in SI
units the Hamiltonian of a hydrogen atom is

H = − ~2

2me

∇2 − e2

4πε0 r
. (101)

When we implement such an equation in a computer program, we need to enter the numerical
values of all the fundamental constants. We can avoid this by using a system of units in which
the numerical values of the electron mass me, the elementary charge e, the Planck-constant ~,
and the dielectric constant 4πε0 are all equal to one. In these units the above equation can be
programmed as

H = −1

2
∇2 − 1

r
. (102)

This immediately tells us: 1 a.u. mass = me and 1 a.u. charge = e. To complete the set of
basis units we still need the atomic unit of length, which we call a0, and of time, t0. To find the
values of a0 and t0 we write ~ and 4πε0 (using simple dimensional analysis) in atomic units:
~ = 1mea

2
0/t0 and 4πε0 = 1 t20e

2/(mea
3
0). Solving this system of equations, we find

1 a.u. length = a0 = 4πε0~2/mee
2 ≈ 5.2918 · 10−11 m

1 a.u. mass = me = ≈ 9.1095 · 10−31 kg
1 a.u. time = t0 = (4πε0)2~3/mee

4 ≈ 2.4189 · 10−17 s
1 a.u. charge = e = ≈ 1.6022 · 10−19 C

The atomic unit of length, a0, is the Bohr radius. As the dimension of energy is mass times
length squared divided by time squared, its atomic unit ismea

2
0/t

2
0 = mee

4/(4πε0)2~2. Because
of its importance the atomic unit of energy has a name, the Hartree. One Hartree is minus twice
the ground-state energy of the hydrogen atom, 1 Ha ≈ 27.211 eV.
It would be tempting to try to set the numerical value of all fundamental constants to unity.
But this must obviously fail, as the system of equations to solve becomes overdetermined when
we try to prescribe the numerical values of constants that are not linearly independent in the
space of basis units. Thus, we cannot, e.g., choose also the speed of light to have value one, as
would be practical for relativistic calculations. Instead, in atomic units it is given by c t0/a0 =

4πε0~c/e2 = 1/α, where α is the fine structure constant. Thus c = α−1 a.u. ≈ 137 a.u.
The Bohr magneton is µB = 1/2 a.u. The Boltzmann constant kB, on the other hand, is
independent of the previous constants. Setting its value to one fixes the unit of temperature to
1 a.u. temperature = mee

4/(4πε0)2~2kB = Ha/kB ≈ 3.158 · 105 K.
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A.2 Non-orthonormal basis

A general one-electron basis of functions |χn〉 will have an overlap matrix Snm = 〈χn|χm〉 that
is positive definite (and hence invertible) and hermitian. The completeness relation is

1 =
∑

k,l|χk〉(S
−1)kl〈χl| . (103)

With it we can easily write the Schrödinger equation Ĥ|v〉 = ε|v〉 in matrix form∑
k

〈χi|H|χk〉︸ ︷︷ ︸
=:Hik

∑
l

(S−1)kl〈χl|v〉︸ ︷︷ ︸
=:vk

〈χi|Ĥ|v〉 = ε〈χi|v〉 = ε
∑
k

〈χi|χk〉︸ ︷︷ ︸
=Sik

∑
l

(S−1)kl〈χl|v〉︸ ︷︷ ︸
=vk

.

(104)
Collecting all components, this becomes the generalized eigenvalue problemHv = εSv. From
the solution v we can easily construct |v〉 =

∑
vk|χk〉. It is, however, often more convenient

to have an orthonormal basis, so that we do not have to deal with the overlap matrices in the
definition of the second quantized operators or the generalized eigenvalue problem.
To orthonormalize the basis {|χn〉}, we need to find a basis transformation T such that

|ϕn〉 :=
∑

m|χm〉Tmn with 〈ϕn|ϕm〉 = δmn . (105)

This implies that T †ST = 1, or equivalently S−1 = TT †. This condition does not uniquely
determine T . In fact there are many orthonormalization techniques, e.g., Gram-Schmidt or-
thonormalization or Cholesky decomposition.
Usually we will have chosen the basis functions |χn〉 for a physical reason, e.g., atomic orbitals,
so that we would like the orthonormal basis functions to be as close to the original basis as
possible, i.e, we ask for the basis transformation T that minimizes∑

n

∥∥|ϕn〉 − |χn〉∥∥2
=
∑
n

∥∥∥∑
m

|χm〉(Tmn−δmn)
∥∥∥2

= Tr (T †−1)S (T−1) = Tr (T †ST︸ ︷︷ ︸
=1

−T †S − ST + S) . (106)

Given an orthonormalization T , we can obtain any other orthonormalization T̃ by performing
a unitary transformation, i.e., T̃ = TU . Writing U = exp(iλM ) withM a Hermitian matrix,
we obtain the variational condition

0
!

= Tr (+iMT †S − iSTM) = iTr (T †S − ST )M , (107)

which is fulfilled for ST = T †S, i.e., ST 2 = T †ST = 1. The second variation at T = S−1/2

1

2
Tr (M 2S1/2 + S1/2M 2) > 0 (108)

is positive, since S and the square of the hermitian matrix M are both positive definite. Hence
the Löwdin symmetric orthogonalization [15]

TLöwdin = S−1/2 (109)

minimizes the modification of the basis vectors due to orthogonalization.
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A.3 Pauli matrices

The spin matrices were defined by Pauli [16] as

σx =

(
0 1

1 0

)
σy =

(
0 −i

i 0

)
σz =

(
1 0

0 −1

)
They are hermitian and unitary, so that σ2

j = σjσ
†
j = 1. Moreover, detσj = −1 and Tr σj = 0.

By explicit multiplication we find σxσy = iσz, from which we get the more symmetric equation
σxσyσz = i. These relations are cyclic, which is easily seen by repeatedly using σ2

j = 1

σxσy = iσz
·σz
; σxσyσz = i

σx·
; σyσz = iσx

·σx
; σyσzσx = i

σy ·
; σzσx = iσy

·σy
; σzσxσy = i .

Exchanging two adjacent indices changes the sign, e.g., multiplying σxσyσz = i from the left
with σyσx gives σyσx=−iσz, which is again cyclic in the indices. We note that the multiplication
table of the matrices −iσj is the same as the that of the basic quaternions. We can summarize
the products of the Pauli matrices in the form(

~a · ~σ
)(
~b · ~σ

)
=
∑

ajbk σjσk =
(
~a ·~b

)
1+ i

(
~a×~b

)
· ~σ . (110)

From the products follow the familiar commutation relations [σx, σy] = 2iσz (cyclic), while the
anticommutators are {σj, σk} = 2δj,k 1.

Together with the unit matrix, the Pauli matrices form a basis of the four-dimensional algebra
of complex 2×2 matrices and we can write(

m11 m12

m21 m22

)
= M = m01+ ~m · ~σ =

(
m0+mz mx−imy

mx+imy m0−mz

)
(111)

with 2m0 = m11+m22, 2mz = m11−m22, 2mx = m12+m21, and 2mx = i(m12−m21), which
can be written as 2mj = TrMσj , with σ0 := 1. When the m0 and ~m are real, M is hermitian.
Matrix products are easily evaluated using (110). As a simple example we find

(m01+ ~m · ~σ)(m01− ~m · ~σ) = m2
0 −m2

x −m2
y −m2

z = detM

(remember detα1N = αN ). Thus, when detM 6= 0, the inverse of M is

M = m01+ ~m · ~σ ; M−1=(m01− ~m · ~σ)/ detM. (112)

For a unitary matrix U=u0 +~u·~σ with detU = 1 we then see from U † = u∗0 +~u ∗ ·~σ !
= u0−~u·~σ

that u0 must be real and ~u = i~n imaginary, so that 1 = detU = u2
0 + ‖~n‖2, which allows us

to write u0 = cosα and ~n = sinα n̂ with unit vector n̂ := ~n/‖~n‖ and α ∈ [0, 2π). Thus any
special unitary 2×2 matrix U∈ SU(2) can be written, using (n̂ ·~σ)2=1 from (110) in the power
series,

Un̂,α = cosα1+ i sinα (n̂ · ~σ) = exp
(
iα n̂ · ~σ

)
. (113)

General unitary matrices with detU = eiα0 have the form U = eiα0/2Un̂,α.
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TheU are related to rotations of vectors~a ∈ R3 viaU(~a·~σ)U †. To see this we remember that~a·~σ
is a hermitian 2×2 matrix with zero trace. By the cyclic property of the trace TrU(~a · ~σ)U † =

Tr~a · ~σ, so that there exists a unique ~aU with U(~a · ~σ)U † = ~aU · ~σ. This mapping ~a → ~aU is
linear, U

(
(c~a+~b) · ~σ

)
U † = cU(~a · ~σ)U † + U(~b · ~σ)U †, and preserves the inner product

~a ·~b = 1
2

Tr(~a · ~σ)(~b · ~σ) = 1
2

TrU(~a · ~σ)U † U(~b · ~σ)U † = 1
2

Tr(~aU · ~σ)(~bU · ~σ) = ~aU ·~bU
so that it must be a proper rotation, ~aU = RU ~a with RU ∈ SO(3). To identify which rotation,
we consider the special case ~a‖ = can̂ for which, by (110), ~a‖ · ~σ commutes with n̂ · ~σ so that
U(~a‖ · ~σ)U † = ~a‖ · ~σ, i.e., n̂ is the axis of rotation. To find the rotation angle ϑ, we consider a
unit vector â⊥ perpendicular to n̂, for which, using (â⊥·~σ)(n̂ ·~σ) = i(â⊥× n̂) ·~σ and Tr~v ·~σ = 0,

cosϑ = â⊥ ·RU â⊥ = 1
2

Tr(â⊥ · ~σ)U(â⊥ · ~σ)U †

= 1
2

Tr(â⊥ · ~σ)(cosα + i sinα (n̂ · ~σ)) (â⊥ · ~σ)(cosα− i sinα (n̂ · ~σ))

= 1
2

Tr
(
cosα â⊥− sinα (â⊥×n̂)

)
· ~σ

(
cosα â⊥+ sinα (â⊥×n̂)

)
· ~σ

=
(
cosα â⊥−sinα (â⊥×n̂)

)
·
(
cosα â⊥+sinα (â⊥×n̂)

)
= (cosα)2− (sinα)2 = cos 2α

Hence, Un̂,α∈ SU(2) induces a rotation RU∈ SO(3) about the axis n̂ through the angle ϑ = 2α.
Therefore, matrices in SU(2) are commonly written using the angle of rotation ϑ ∈ [0, 4π)

instead of α ∈ [0, 2π) as U(n̂, ϑ) = exp(iϑ
2
n̂ · ~σ). We see, in particular, that the two matrices

U(n̂, ϑ) and U(n̂, ϑ+2π) = −U(n̂, ϑ) in SU(2) induce the same rotation R−U = RU ∈ SO(3).

Diagonalizing a hermitian 2×2 matrix M = m01+ ~m · ~σ is now simple: just rotate m̂→ ẑ

U
(
m01+ ‖~m‖ (m̂ · ~σ)

)
U † = m01+ ‖~m‖σz

from which we easily read off the eigenvalues

ε± = m0 ± ‖~m‖ =
m11+m22

2
±
√

(m11−m22)2

4
+|m12|2 = 1

2
TrM ±

√(
1
2

TrM
)2− detM,

while the eigenvalues are the columns vectors of U † =
(
v+, v−

)
m01+ ~m · ~σ = U †

(
m01+ ‖~m‖σz

)
U = m01+ ‖~m‖

(
v+,v−

)
σz

(
v†+
v†−

)
We still need to determine a U that rotates m̂ → ẑ. The rotation axis should be orthogonal
to both vectors, i.e., n̂ = ẑ×m̂/‖ẑ×m̂‖ = (mxŷ−myx̂)/

√
m2
x+m

2
y, so that the rotation angle

ϑ ∈ [0, π] is determined by cosϑ = m̂·ẑ = mz/‖~m‖. Using also the other spherical coordinates
mx = ‖~m‖ sinϑ cosϕ and my = ‖~m‖ sinϑ sinϕ, we get n̂ = cosϕ ŷ − sinϕ x̂ so that

U(n̂, ϑ) =

(
cos ϑ

2
+ inz sin ϑ

2
(ny+inx) sin ϑ

2

−(ny−inx) sin ϑ
2

cos ϑ
2
− inz sin ϑ

2

)
=

(
cos ϑ

2
+e−iϕ sin ϑ

2

−e+iϕ sin ϑ
2

cos ϑ
2

)
from which we read off the eigenvectors as the columns of U † (which you may want to check
for simple cases like M =σz, σx or σy)

v+ =

(
cos ϑ

2

+e+iϕ sin ϑ
2

)
and v− =

(
−e−iϕ sin ϑ

2

cos ϑ
2

)
with

ϕ = arg(m21)=− arg(m12)

ϑ = arccos
m11−m22

ε+−ε−

.

(114)
A more symmetric form of the eigenvectors may be obtained by writing e∓iϕ/2v±.
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A.4 Some useful commutation relations

Commuting an operator through a product of operators is straightforward

AB1 · · ·BN = [A, B1]B2 · · ·BN +B1AB2 · · ·BN

= [A, B1]B2 · · ·BN +B1[A, B2] · · ·BN +B1B2A · · ·BN

...

=
N∑
n=1

n−1∏
i=1

Bi [A, Bn]
N∏

i=n+1

Bi +B1 · · ·BNA

while, working analogously, anticommuting introduces alternating signs

AB1 · · ·BN = {A, B1}B2 · · ·BN −B1AB2 · · ·BN

= {A, B1}B2 · · ·BN −B1{A, B2} · · ·BN −B1B2A · · ·BN

...

=
N∑
n=1

(−1)n−1

n−1∏
i=1

Bi {A, Bn}
N∏

i=n+1

Bi + (−1)NB1 · · ·BNA

The following special cases are particularly useful

[A, BC] = [A, B]C + B [A, C]

= {A, B}C −B{A, C}

[AB, C] = A [B, C] + [A, C]B

= A{B, C} − {A, C}B

[AB, CD] = A [B, C]D + AC [B, D] + [A,C] DB + C [A, D]B

= A{B, C}D − AC{B, D}+ {A,C}DB − C{A, D}B

Important examples are
[
c†icj, c

†
γ

]
= 〈j|γ〉 c†i and

[
c†icj, cγ

]
= −〈i |γ〉 cj .

For the commutator of products of creation and annihilation operators appearing in one- and
two-body operators we find[

c†icj, c
†
αcβ
]

=
[
c†icj, c

†
α

]
cβ + c†α

[
c†icj, cβ

]
= 〈j|α〉 c†icβ − 〈β|i〉 c

†
αcj

and [
c†ic
†
jckcl , c

†
αcβ
]

= 〈l|α〉 c†ic
†
jckcβ + 〈k|α〉 c†ic

†
jcβcl − 〈β|j〉 c

†
ic
†
αckcl − 〈β|i〉 c

†
αc
†
jckcl .
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[8] W. Heisenberg: Über quantentheoretische Umdeutung kinematischer und mechanischer
Beziehungen, Z. Phys. 33, 879 (1925)

[9] P.M.A. Dirac: The Quantum Theory of the Emission and Absorption of Radiation,
Proc. Roy. Soc. Lond. A 114, 243 (1927)

[10] P. Jordan: Zur Quantenmechanik der Gasentartung, Z. Phys. 44, 473 (1927)
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