000902604 001__ 902604
000902604 005__ 20220103172042.0
000902604 0247_ $$2doi$$a10.1039/D1CC02191E
000902604 0247_ $$2ISSN$$a0009-241X
000902604 0247_ $$2ISSN$$a0022-4936
000902604 0247_ $$2ISSN$$a1359-7345
000902604 0247_ $$2ISSN$$a1364-548X
000902604 0247_ $$2ISSN$$a2050-5620
000902604 0247_ $$2ISSN$$a2050-5639
000902604 0247_ $$2Handle$$a2128/29278
000902604 0247_ $$2altmetric$$aaltmetric:110948427
000902604 0247_ $$2pmid$$apmid:34128505
000902604 0247_ $$2WOS$$aWOS:000661559200001
000902604 037__ $$aFZJ-2021-04399
000902604 082__ $$a540
000902604 1001_ $$0P:(DE-Juel1)171762$$aMetzelaars, Marvin$$b0
000902604 245__ $$aFusing pyrene and ferrocene into a chiral, redox-active triangle
000902604 260__ $$aCambridge$$bSoc.$$c2021
000902604 3367_ $$2DRIVER$$aarticle
000902604 3367_ $$2DataCite$$aOutput Types/Journal article
000902604 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638446915_23201
000902604 3367_ $$2BibTeX$$aARTICLE
000902604 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902604 3367_ $$00$$2EndNote$$aJournal Article
000902604 520__ $$aFundamental understanding and control of electron transfer processes in molecular building blocks are key to construct nanoscale (spin)electronic devices. Ferrocene (Fc) has been studied extensively in this context due to high conductance and stability, and its well-defined and reversible redox-switching behaviour.1 The integration of multiple Fc groups into a single, nonlinear molecule (e.g. stars2 or macrocycles3) generates materials with extraordinary electronic properties that might not be observed in linear analogues. So far only a handful of shape-persistent and cyclic Fc-based compounds have been synthesised by linking Fc groups either directly3g,h or via simple bridging units, like diethynylbenzene derivatives.3c–eUsing the larger aromatic building block pyrene (Py), we can tune the properties for a range of applications. The Py group is fundamental in host–guest chemistry, used in metallacycles and -cages to entrap fullerenes and other guests.4 Preuß et al. used linear ferrocenyl–pyrenes to disentangle and functionalise carbon nanotubes via π–π stacking.5 We showed that a Fc-bridged pyrenophane can be sublimed onto ferromagnetic surfaces to craft 3D spin interfaces.6 The photophysical properties of pyrene have been exploited in phototransistors, “turn-on” sensors and fluorescence switches based on Fc–Py dyads.7To construct a macrocycle with two different functional units often entails protracted, stepwise synthesis. We recently demonstrated a one-step Suzuki–Miyaura cross-coupling (SMC) route to an insoluble, pyrene-based cyclophane in <1% yield (Chart 1, cyclophane). By this method, we synthesised a soluble macrocycle of three Fc–Py dyads bonded into a triangle (Chart 1, 3). Employing 2,7-bis(Bpin)pyrene as linear and 1,1′-diiodoferrocene as angular building blocks, our optimised conditions gave a yield of 6% (PdCl2(dtbpf) in DMF). The Fc group adopts a range of angles to serve as a vertex in linear and larger cyclic oligomers with low solubility, which we could detect by mass spectrometry of crude reaction mixtures, albeit not isolate. Soluble side products, likely generated via dehalogenation or deborylation of acyclic intermediates, were also identified (see Fig. S12 and S13†). We synthesised noncyclic molecules 1 and 2 that complete the series in Chart 1. The identity of dyad 1, stack 2 and triangle 3 were confirmed by 1H/13C-NMR (Fig. S1–S7†), MALDI-HRMS (Fig. S8–S11†), and elemental analysis.
000902604 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000902604 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902604 7001_ $$0P:(DE-HGF)0$$aSanz, Sergio$$b1
000902604 7001_ $$0P:(DE-Juel1)171575$$aRawson, Jeff$$b2
000902604 7001_ $$0P:(DE-Juel1)132001$$aHartmann, Rudolf$$b3
000902604 7001_ $$0P:(DE-Juel1)130948$$aSchneider, Claus M.$$b4
000902604 7001_ $$0P:(DE-Juel1)130782$$aKögerler, Paul$$b5$$eCorresponding author
000902604 773__ $$0PERI:(DE-600)1472881-3$$a10.1039/D1CC02191E$$gVol. 57, no. 54, p. 6660 - 6663$$n54$$p6660 - 6663$$tChemical communications$$v57$$x0009-241X$$y2021
000902604 8564_ $$uhttps://juser.fz-juelich.de/record/902604/files/accepted%20author%20manuscript.pdf$$yPublished on 2021-06-07. Available in OpenAccess from 2022-06-07.
000902604 8564_ $$uhttps://juser.fz-juelich.de/record/902604/files/d1cc02191e.pdf$$yRestricted
000902604 909CO $$ooai:juser.fz-juelich.de:902604$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171762$$aForschungszentrum Jülich$$b0$$kFZJ
000902604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132001$$aForschungszentrum Jülich$$b3$$kFZJ
000902604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich$$b4$$kFZJ
000902604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130782$$aForschungszentrum Jülich$$b5$$kFZJ
000902604 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000902604 9141_ $$y2021
000902604 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000902604 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000902604 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000902604 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000902604 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM COMMUN : 2019$$d2021-01-29
000902604 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM COMMUN : 2019$$d2021-01-29
000902604 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000902604 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000902604 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2021-01-29
000902604 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000902604 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2021-01-29$$wger
000902604 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000902604 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-01-29
000902604 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-29$$wger
000902604 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000902604 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000902604 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000902604 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000902604 980__ $$ajournal
000902604 980__ $$aVDB
000902604 980__ $$aUNRESTRICTED
000902604 980__ $$aI:(DE-Juel1)PGI-6-20110106
000902604 9801_ $$aFullTexts