001     902604
005     20220103172042.0
024 7 _ |a 10.1039/D1CC02191E
|2 doi
024 7 _ |a 0009-241X
|2 ISSN
024 7 _ |a 0022-4936
|2 ISSN
024 7 _ |a 1359-7345
|2 ISSN
024 7 _ |a 1364-548X
|2 ISSN
024 7 _ |a 2050-5620
|2 ISSN
024 7 _ |a 2050-5639
|2 ISSN
024 7 _ |a 2128/29278
|2 Handle
024 7 _ |a altmetric:110948427
|2 altmetric
024 7 _ |a pmid:34128505
|2 pmid
024 7 _ |a WOS:000661559200001
|2 WOS
037 _ _ |a FZJ-2021-04399
082 _ _ |a 540
100 1 _ |a Metzelaars, Marvin
|0 P:(DE-Juel1)171762
|b 0
245 _ _ |a Fusing pyrene and ferrocene into a chiral, redox-active triangle
260 _ _ |a Cambridge
|c 2021
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1638446915_23201
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Fundamental understanding and control of electron transfer processes in molecular building blocks are key to construct nanoscale (spin)electronic devices. Ferrocene (Fc) has been studied extensively in this context due to high conductance and stability, and its well-defined and reversible redox-switching behaviour.1 The integration of multiple Fc groups into a single, nonlinear molecule (e.g. stars2 or macrocycles3) generates materials with extraordinary electronic properties that might not be observed in linear analogues. So far only a handful of shape-persistent and cyclic Fc-based compounds have been synthesised by linking Fc groups either directly3g,h or via simple bridging units, like diethynylbenzene derivatives.3c–eUsing the larger aromatic building block pyrene (Py), we can tune the properties for a range of applications. The Py group is fundamental in host–guest chemistry, used in metallacycles and -cages to entrap fullerenes and other guests.4 Preuß et al. used linear ferrocenyl–pyrenes to disentangle and functionalise carbon nanotubes via π–π stacking.5 We showed that a Fc-bridged pyrenophane can be sublimed onto ferromagnetic surfaces to craft 3D spin interfaces.6 The photophysical properties of pyrene have been exploited in phototransistors, “turn-on” sensors and fluorescence switches based on Fc–Py dyads.7To construct a macrocycle with two different functional units often entails protracted, stepwise synthesis. We recently demonstrated a one-step Suzuki–Miyaura cross-coupling (SMC) route to an insoluble, pyrene-based cyclophane in <1% yield (Chart 1, cyclophane). By this method, we synthesised a soluble macrocycle of three Fc–Py dyads bonded into a triangle (Chart 1, 3). Employing 2,7-bis(Bpin)pyrene as linear and 1,1′-diiodoferrocene as angular building blocks, our optimised conditions gave a yield of 6% (PdCl2(dtbpf) in DMF). The Fc group adopts a range of angles to serve as a vertex in linear and larger cyclic oligomers with low solubility, which we could detect by mass spectrometry of crude reaction mixtures, albeit not isolate. Soluble side products, likely generated via dehalogenation or deborylation of acyclic intermediates, were also identified (see Fig. S12 and S13†). We synthesised noncyclic molecules 1 and 2 that complete the series in Chart 1. The identity of dyad 1, stack 2 and triangle 3 were confirmed by 1H/13C-NMR (Fig. S1–S7†), MALDI-HRMS (Fig. S8–S11†), and elemental analysis.
536 _ _ |a 5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)
|0 G:(DE-HGF)POF4-5223
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Sanz, Sergio
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rawson, Jeff
|0 P:(DE-Juel1)171575
|b 2
700 1 _ |a Hartmann, Rudolf
|0 P:(DE-Juel1)132001
|b 3
700 1 _ |a Schneider, Claus M.
|0 P:(DE-Juel1)130948
|b 4
700 1 _ |a Kögerler, Paul
|0 P:(DE-Juel1)130782
|b 5
|e Corresponding author
773 _ _ |a 10.1039/D1CC02191E
|g Vol. 57, no. 54, p. 6660 - 6663
|0 PERI:(DE-600)1472881-3
|n 54
|p 6660 - 6663
|t Chemical communications
|v 57
|y 2021
|x 0009-241X
856 4 _ |y Published on 2021-06-07. Available in OpenAccess from 2022-06-07.
|u https://juser.fz-juelich.de/record/902604/files/accepted%20author%20manuscript.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/902604/files/d1cc02191e.pdf
909 C O |o oai:juser.fz-juelich.de:902604
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171762
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132001
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130948
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130782
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5223
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM COMMUN : 2019
|d 2021-01-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEM COMMUN : 2019
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2021-01-29
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21