000902608 001__ 902608
000902608 005__ 20240711113615.0
000902608 0247_ $$2doi$$a10.1088/1741-4326/ac31d6
000902608 0247_ $$2ISSN$$a0029-5515
000902608 0247_ $$2ISSN$$a1741-4326
000902608 0247_ $$2Handle$$a2128/29864
000902608 0247_ $$2altmetric$$aaltmetric:116970372
000902608 0247_ $$2WOS$$aWOS:000718605000001
000902608 037__ $$aFZJ-2021-04403
000902608 082__ $$a620
000902608 1001_ $$00000-0002-5585-4279$$avan der Meiden, H. J.$$b0
000902608 245__ $$aMonitoring of tritium and impurities in the first wall of fusion devices using a LIBS based diagnostic
000902608 260__ $$aVienna$$bIAEA$$c2021
000902608 3367_ $$2DRIVER$$aarticle
000902608 3367_ $$2DataCite$$aOutput Types/Journal article
000902608 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641372444_24985
000902608 3367_ $$2BibTeX$$aARTICLE
000902608 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902608 3367_ $$00$$2EndNote$$aJournal Article
000902608 520__ $$aLaser-induced breakdown spectroscopy (LIBS) is one of the most promising methods for quantitative in-situ determination of fuel retention in plasma-facing components (PFCs) of magnetically confined fusion devices like ITER and JET. In this article, the current state of understanding in LIBS development for fusion applications will be presented, based on a complete review of existing results and complemented with newly obtained data. The work has been performed as part of a research programme, set up in the EUROfusion Consortium, to address the main requirements for ITER: (a) quantification of fuel from relevant surfaces with high sensitivity, (b) the technical demonstration to perform LIBS with a remote handling system and (c) accurate detection of fuel at ambient pressures relevant for ITER. For the first goal, the elemental composition of ITER-like deposits and proxies to them, including deuterium (D) or helium (He) containing W–Be, W, W–Al and Be–O–C coatings, was successfully determined with a typical depth resolution ranging from 50 up to 250 nm per laser pulse. Deuterium was used as a substitute for tritium (T) and in the LIBS experiments deuterium surface densities below 1016 D/cm2 could be measured with an accuracy of ∼30%, confirming the required high sensitivity for fuel-retention investigations. The performance of different LIBS configurations was explored, comprising LIBS systems based on single pulse (pulse durations: ps–ns) and double pulse lasers with different pulse durations. For the second goal, a remote handling application was demonstrated inside the Frascati-Tokamak-Upgrade (FTU), where a compact, remotely controlled LIBS system was mounted on a multipurpose deployer providing an in-vessel retention monitor system. During a shutdown phase, LIBS was performed at atmospheric pressure, for measuring the composition and fuel content of different area of the stainless-steel FTU first wall, and the titanium zirconium molybdenum alloy tiles of the toroidal limiter. These achievements underline the capability of a LIBS-based retention monitor, which complies with the requirements for JET and ITER operating in DT with a beryllium wall and a tungsten divertor. Concerning the capabilities of LIBS at pressure conditions relevant for ITER, quantitative determination of the composition of PFC materials at ambient pressures up to 100 mbar of N2, the D content could be determined with an accuracy of 25%, while for atmospheric pressure conditions, an accuracy of about 50% was found when using single-pulse lasers. To improve the LIBS performance in atmospheric pressure conditions, a novel approach is proposed for quantitative determination of the retained T and the D/T ratio. This scenario is based on measuring the LIBS plume emission at two different time delays after each laser pulse. On virtue of application of a double pulse LIBS system, for LIBS application at N2 atmospheric pressure the distinguishability of the spectra from H isotopes could be significantly improved, but further systematic research is required.
000902608 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000902608 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902608 7001_ $$00000-0002-8671-9969$$aAlmaviva, S.$$b1
000902608 7001_ $$00000-0002-8203-2502$$aButikova, J.$$b2
000902608 7001_ $$00000-0002-0667-5194$$aDwivedi, V.$$b3
000902608 7001_ $$00000-0002-4878-7653$$aGasior, P.$$b4
000902608 7001_ $$00000-0003-2683-8453$$aGromelski, W.$$b5
000902608 7001_ $$00000-0003-1385-1296$$aHakola, A.$$b6
000902608 7001_ $$0P:(DE-Juel1)166372$$aJiang, XI$$b7
000902608 7001_ $$00000-0003-0007-8732$$aJõgi, I.$$b8
000902608 7001_ $$0P:(DE-HGF)0$$aKarhunen, J.$$b9
000902608 7001_ $$00000-0003-1320-7468$$aKubkowska, M.$$b10
000902608 7001_ $$00000-0003-4747-6666$$aLaan, M.$$b11
000902608 7001_ $$0P:(DE-HGF)0$$aMaddaluno, G.$$b12
000902608 7001_ $$00000-0002-8831-2783$$aMarín-Roldán, A.$$b13
000902608 7001_ $$00000-0002-0829-7510$$aParis, P.$$b14
000902608 7001_ $$0P:(DE-HGF)0$$aPiip, K.$$b15
000902608 7001_ $$0P:(DE-HGF)0$$aPisarčík, M.$$b16
000902608 7001_ $$0P:(DE-Juel1)130158$$aSergienko, G.$$b17$$eCorresponding author
000902608 7001_ $$00000-0002-1441-1658$$aVeis, M.$$b18
000902608 7001_ $$00000-0003-4172-5203$$aVeis, P.$$b19
000902608 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b20$$eCorresponding author
000902608 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/ac31d6$$gVol. 61, no. 12, p. 125001 -$$n12$$p125001 -$$tNuclear fusion$$v61$$x0029-5515$$y2021
000902608 8564_ $$uhttps://juser.fz-juelich.de/record/902608/files/Monitoring%20of%20tritium%20and%20impurities_van%20der%20Meiden.pdf$$yPublished on 2021-12-12. Available in OpenAccess from 2022-12-12.
000902608 8564_ $$uhttps://juser.fz-juelich.de/record/902608/files/van_der_Meiden_2021_Nucl._Fusion_61_125001-1.pdf$$yRestricted
000902608 909CO $$ooai:juser.fz-juelich.de:902608$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166372$$aForschungszentrum Jülich$$b7$$kFZJ
000902608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130158$$aForschungszentrum Jülich$$b17$$kFZJ
000902608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b20$$kFZJ
000902608 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000902608 9141_ $$y2021
000902608 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000902608 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000902608 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000902608 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000902608 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2019$$d2021-01-27
000902608 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000902608 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000902608 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000902608 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000902608 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000902608 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-27$$wger
000902608 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000902608 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000902608 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000902608 920__ $$lyes
000902608 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000902608 9801_ $$aFullTexts
000902608 980__ $$ajournal
000902608 980__ $$aVDB
000902608 980__ $$aUNRESTRICTED
000902608 980__ $$aI:(DE-Juel1)IEK-4-20101013
000902608 981__ $$aI:(DE-Juel1)IFN-1-20101013