000902614 001__ 902614 000902614 005__ 20220103172049.0 000902614 0247_ $$2doi$$a10.3390/molecules26030757 000902614 0247_ $$2ISSN$$a1420-3049 000902614 0247_ $$2Handle$$a2128/29248 000902614 0247_ $$2pmid$$a33540541 000902614 0247_ $$2WOS$$aWOS:000615458800001 000902614 037__ $$aFZJ-2021-04409 000902614 082__ $$a540 000902614 1001_ $$00000-0003-0044-2469$$aO’Connor, Helen M.$$b0 000902614 245__ $$a[CrIII8NiII6]n+ Heterometallic Coordination Cubes 000902614 260__ $$aBasel$$bMDPI$$c2021 000902614 3367_ $$2DRIVER$$aarticle 000902614 3367_ $$2DataCite$$aOutput Types/Journal article 000902614 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638343867_8537 000902614 3367_ $$2BibTeX$$aARTICLE 000902614 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000902614 3367_ $$00$$2EndNote$$aJournal Article 000902614 520__ $$aThree new heterometallic [CrIII8NiII6] coordination cubes of formulae [CrIII8NiII6L24(H2O)12](NO3)12 (1), [CrIII8NiII6L24(MeCN)7(H2O)5](ClO4)12 (2), and [CrIII8NiII6L24Cl12] (3) (where HL = 1-(4-pyridyl)butane-1,3-dione), were synthesised using the paramagnetic metalloligand [CrIIIL3] and the corresponding NiII salt. The magnetic skeleton of each capsule describes a face-centred cube in which the eight CrIII and six NiII ions occupy the eight vertices and six faces of the structure, respectively. Direct current magnetic susceptibility measurements on (1) reveal weak ferromagnetic interactions between the CrIII and NiII ions, with JCr-Ni = + 0.045 cm−1. EPR spectra are consistent with weak exchange, being dominated by the zero-field splitting of the CrIII ions. Excluding wheel-like structures, examples of large heterometallic clusters containing both CrIII and NiII ions are rather rare, and we demonstrate that the use of metalloligands with predictable bonding modes allows for a modular approach to building families of related polymetallic complexes. Compounds (1)–(3) join the previously published, structurally related family of [MIII8MII6] cubes, where MIII = Cr, Fe and MII = Cu, Co, Mn, Pd 000902614 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0 000902614 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000902614 7001_ $$0P:(DE-HGF)0$$aScott, Aaron J.$$b1 000902614 7001_ $$0P:(DE-HGF)0$$aPitak, Mateusz B.$$b2 000902614 7001_ $$0P:(DE-HGF)0$$aKlooster, Wim T.$$b3 000902614 7001_ $$00000-0001-8414-9272$$aColes, Simon J.$$b4 000902614 7001_ $$0P:(DE-HGF)0$$aChilton, Nicholas F.$$b5 000902614 7001_ $$0P:(DE-HGF)0$$aMcInnes, Eric J. L.$$b6 000902614 7001_ $$0P:(DE-HGF)0$$aLusby, Paul J.$$b7 000902614 7001_ $$0P:(DE-HGF)0$$aWeihe, Høgni$$b8 000902614 7001_ $$0P:(DE-HGF)0$$aPiligkos, Stergios$$b9 000902614 7001_ $$00000-0002-9365-370X$$aBrechin, Euan K.$$b10$$eCorresponding author 000902614 7001_ $$0P:(DE-Juel1)174352$$aCalvo, Sergio$$b11 000902614 773__ $$0PERI:(DE-600)2008644-1$$a10.3390/molecules26030757$$gVol. 26, no. 3, p. 757 -$$n3$$p757 -$$tMolecules$$v26$$x1420-3049$$y2021 000902614 8564_ $$uhttps://juser.fz-juelich.de/record/902614/files/molecules-26-00757.pdf$$yOpenAccess 000902614 909CO $$ooai:juser.fz-juelich.de:902614$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000902614 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174352$$aForschungszentrum Jülich$$b11$$kFZJ 000902614 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0 000902614 9141_ $$y2021 000902614 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04 000902614 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04 000902614 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000902614 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04 000902614 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOLECULES : 2019$$d2021-05-04 000902614 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04 000902614 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04 000902614 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04 000902614 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04 000902614 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04 000902614 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04 000902614 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000902614 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04 000902614 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04 000902614 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04 000902614 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04 000902614 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04 000902614 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04 000902614 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0 000902614 980__ $$ajournal 000902614 980__ $$aVDB 000902614 980__ $$aUNRESTRICTED 000902614 980__ $$aI:(DE-Juel1)PGI-6-20110106 000902614 9801_ $$aFullTexts