000902619 001__ 902619
000902619 005__ 20230310131352.0
000902619 0247_ $$2doi$$a10.1140/epja/s10050-021-00586-6
000902619 0247_ $$2ISSN$$a1434-6001
000902619 0247_ $$2ISSN$$a1434-601X
000902619 0247_ $$2Handle$$a2128/29114
000902619 0247_ $$2altmetric$$aaltmetric:107374498
000902619 0247_ $$2WOS$$aWOS:000698108300001
000902619 037__ $$aFZJ-2021-04414
000902619 082__ $$a530
000902619 1001_ $$0P:(DE-Juel1)185916$$aShen, Shihang$$b0$$eCorresponding author
000902619 245__ $$aWigner SU(4) symmetry, clustering, and the spectrum of $^{12}$C
000902619 260__ $$aHeidelberg$$bSpringer$$c2021
000902619 3367_ $$2DRIVER$$aarticle
000902619 3367_ $$2DataCite$$aOutput Types/Journal article
000902619 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637676253_32068
000902619 3367_ $$2BibTeX$$aARTICLE
000902619 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902619 3367_ $$00$$2EndNote$$aJournal Article
000902619 520__ $$aWe present lattice calculations of the low-lying spectrum of 12C using a simple nucleon–nucleon interaction that is independent of spin and isospin and therefore invariant under Wigner’s SU(4) symmetry. We find strong signals for all excited states up to ∼15 MeV above the ground state, and explore the structure of each state using a large variety of α cluster and harmonic oscillator trial states, projected onto given irreducible representations of the cubic group. We are able to verify earlier findings for the α clustering in the Hoyle state and the second 2+ state of 12C. The success of these calculations to describe the full low-lying energy spectrum using spin-independent interactions suggest that either the spin-orbit interactions are somewhat weak in the 12C system, or the effects of α clustering are diminishing their influence. This is in agreement with previous findings from ab initio shell model calculations.
000902619 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation  Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000902619 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1
000902619 536__ $$0G:(DE-Juel1)hfz02_20190501$$aNuclear Lattice Simulations (hfz02_20190501)$$chfz02_20190501$$fNuclear Lattice Simulations$$x2
000902619 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902619 7001_ $$0P:(DE-Juel1)145995$$aLähde, Timo A.$$b1
000902619 7001_ $$0P:(DE-Juel1)156278$$aLee, Dean$$b2
000902619 7001_ $$0P:(DE-Juel1)131252$$aMeißner, Ulf-G.$$b3
000902619 773__ $$0PERI:(DE-600)1459066-9$$a10.1140/epja/s10050-021-00586-6$$gVol. 57, no. 9, p. 276$$n9$$p276$$tThe European physical journal / A$$v57$$x1434-6001$$y2021
000902619 8564_ $$uhttps://juser.fz-juelich.de/record/902619/files/Shen2021_Article_WignerSU4SymmetryClusteringAnd.pdf$$yOpenAccess
000902619 8767_ $$d2021-09-20$$eHybrid-OA$$jDEAL
000902619 909CO $$ooai:juser.fz-juelich.de:902619$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000902619 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185916$$aForschungszentrum Jülich$$b0$$kFZJ
000902619 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145995$$aForschungszentrum Jülich$$b1$$kFZJ
000902619 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156278$$aForschungszentrum Jülich$$b2$$kFZJ
000902619 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich$$b3$$kFZJ
000902619 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000902619 9141_ $$y2021
000902619 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000902619 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000902619 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902619 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000902619 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J A : 2019$$d2021-01-29
000902619 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000902619 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-29$$wger
000902619 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000902619 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000902619 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902619 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000902619 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000902619 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000902619 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000902619 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000902619 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000902619 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000902619 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000902619 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000902619 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000902619 9801_ $$aFullTexts
000902619 980__ $$ajournal
000902619 980__ $$aVDB
000902619 980__ $$aUNRESTRICTED
000902619 980__ $$aI:(DE-Juel1)IAS-4-20090406
000902619 980__ $$aAPC