000902623 001__ 902623
000902623 005__ 20211125141851.0
000902623 0247_ $$2doi$$a10.1002/qute.202170111
000902623 0247_ $$2Handle$$a2128/29133
000902623 037__ $$aFZJ-2021-04418
000902623 082__ $$a530
000902623 1001_ $$0P:(DE-Juel1)168208$$aLeis, Arthur$$b0$$ufzj
000902623 245__ $$aFront Cover: Lifting the Spin‐Momentum Locking in Ultra‐Thin Topological Insulator Films (Adv. Quantum Technol. 11/2021)
000902623 260__ $$aWeinheim$$bWiley-VCH Verlag$$c2021
000902623 3367_ $$2DRIVER$$aarticle
000902623 3367_ $$2DataCite$$aOutput Types/Journal article
000902623 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637759917_9491
000902623 3367_ $$2BibTeX$$aARTICLE
000902623 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902623 3367_ $$00$$2EndNote$$aJournal Article
000902623 520__ $$aIn article number 2100083, Arthur Leis, Bert Voigtländer and co-workers demonstrate nanoscale four-probe measurements on atomically thin topological insulator films. For this purpose, four individual scanning tunneling microscope tips are directly contacting individual terraces on the sample surface to quantify the thickness-dependent film conductivity. This enables the authors to detect a breakdown of spin-momentum locking in the topological surface state as a function of the film thickness. In the few-layer limit, this effect can realize helical edge modes along step edges with potential applications in spintronics and quantum computing.
000902623 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000902623 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x1
000902623 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x2
000902623 536__ $$0G:(BMBF)390534769$$aEXC 2004:  Matter and Light for Quantum Computing (ML4Q) (390534769)$$c390534769$$x3
000902623 536__ $$0G:(GEPRIS)422707584$$a2D Materialien : die Physik von van der Waals [Hetero-]Strukturen (2DMP) (422707584)$$c422707584$$x4
000902623 536__ $$0G:(GEPRIS)385975694$$aStructure and Phonons of Heteroepitaxial Stacks of Weakly Interacting 2D Materials and Molecular Layers (A12) (385975694)$$c385975694$$x5
000902623 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902623 7001_ $$0P:(DE-Juel1)171405$$aSchleenvoigt, Michael$$b1$$ufzj
000902623 7001_ $$0P:(DE-Juel1)128762$$aCherepanov, Vasily$$b2$$ufzj
000902623 7001_ $$0P:(DE-Juel1)162163$$aLüpke, Felix$$b3$$ufzj
000902623 7001_ $$0P:(DE-Juel1)165984$$aSchüffelgen, Peter$$b4$$ufzj
000902623 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b5$$ufzj
000902623 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b6$$ufzj
000902623 7001_ $$0P:(DE-Juel1)128794$$aVoigtländer, Bert$$b7$$eCorresponding author$$ufzj
000902623 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b8$$ufzj
000902623 773__ $$0PERI:(DE-600)2885525-5$$a10.1002/qute.202170111$$gVol. 4, no. 11, p. 2170111 -$$n11$$p2170111 -$$tAdvanced quantum technologies$$v4$$x2511-9044$$y2021
000902623 8564_ $$uhttps://juser.fz-juelich.de/record/902623/files/qute.202170111.pdf$$yOpenAccess
000902623 909CO $$ooai:juser.fz-juelich.de:902623$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000902623 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168208$$aForschungszentrum Jülich$$b0$$kFZJ
000902623 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171405$$aForschungszentrum Jülich$$b1$$kFZJ
000902623 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128762$$aForschungszentrum Jülich$$b2$$kFZJ
000902623 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162163$$aForschungszentrum Jülich$$b3$$kFZJ
000902623 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165984$$aForschungszentrum Jülich$$b4$$kFZJ
000902623 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich$$b5$$kFZJ
000902623 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b6$$kFZJ
000902623 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128794$$aForschungszentrum Jülich$$b7$$kFZJ
000902623 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b8$$kFZJ
000902623 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000902623 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x1
000902623 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x2
000902623 9141_ $$y2021
000902623 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-25
000902623 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-25$$wger
000902623 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-08-25
000902623 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902623 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-08-25
000902623 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-25
000902623 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
000902623 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x1
000902623 9201_ $$0I:(DE-Juel1)VDB881$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000902623 980__ $$ajournal
000902623 980__ $$aVDB
000902623 980__ $$aUNRESTRICTED
000902623 980__ $$aI:(DE-Juel1)PGI-3-20110106
000902623 980__ $$aI:(DE-Juel1)PGI-9-20110106
000902623 980__ $$aI:(DE-Juel1)VDB881
000902623 9801_ $$aFullTexts