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1 Introduction

Soon after the discovery of the instanton solution of euclidean Yang-Mills gauge field the-
ories [1], it has been realized that the vacuum structure of theories such as quantum
chromodynamics (QCD) is highly non-trivial and that a so-called θ-term appears [2]

LQCD = LQCD,0 + θ

(
g

4π

)2
Tr
[
GµνG̃

µν
]
, (1.1)

which is CP non-invariant as long as no quark is massless and as long as the effective angle
θ̄ = θ + Arg detM is non-zero, where M refers to the quark mass matrix. In eq. (1.1),
LQCD,0 denotes the usual QCD Lagrangian without the θ-term, g is the QCD coupling
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constant, Gµν the gluon field strength tensor, G̃µν = εµναβGαβ/2 its dual, and Tr denotes
the trace in color space. As a consequence, the neutron acquires an electric dipole moment
∝ θ̄ [3]. Theoretical estimations of the θ̄-induced neutron electric dipole moment (nEDM)
roughly vary between |dn| ≈ 10−16θ̄ e cm and |dn| ≈ 10−15θ̄ e cm; see refs. [4–7]. The
extreme small upper limit for the physical value of the nEDM determined in experiments
(the most recent result is |dn| < 1.8× 10−26 e cm (90% C.L.) [8]) implies

θ̄ . 10−11 , (1.2)

which is a rather unnatural value for a quantity that in principle might take on values
between 0 and 2π (where θ = π is a special point [9]). Even though θ̄ of O(1) would alter
nuclear physics and big bang and stellar nucleosynthesis considerably [10], such anthropic
considerations do not constrain θ̄ to such a tiny value. One possible way to explain why
θ̄ ≈ 0 (in other words, to resolve the so-called “strong CP -problem”) is the Peccei-Quinn
mechanism [11, 12], which features a new global chiral symmetry, now usually labeled
U(1)PQ, and which automatically leads to θ̄ = 0. The physical relic of this mechanism
is not only a CP -conserving QCD Lagrangian, but also a new, very light pseudoscalar
pseudo-Nambu-Goldstone boson with zero bare mass called axion [13, 14], which soon after
its theoretical description also became a serious dark matter candidate [15–21], possibly
forming Bose-Einstein condensates [22]. Both, the fact that the Peccei-Quinn mechanism
provides an elegant solution to the strong CP -problem, and that it at the same time
might provide a solution to the missing matter problem of the universe, accounts for the
unwavering interest in the axion, even though it has not been detected yet and its existence
hence remains hypothetical.

The original (“visible”) Peccei-Quinn-Weinberg-Wilczek (PQWW) axion with a decay
constant at the electroweak scale and a mass in the keV/MeV region seems to be ruled out
experimentally [4, 23–25], although there are still attempts to make the experimental data
compatible with the original model [26, 27]. However, these models require a lot of addi-
tional assumptions including that these axions restrictively couple to the first generation
fermions (up and down quark, electron) and are accidentally pion-phobic. The clearly pre-
ferred models are the so-called “invisible” axion models such as the Kim-Shifman-Vainstein-
Zakharov (KSVZ) axion model [28, 29] (which sometimes is called “hadronic” as it does not
couple to leptons) or the Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) axion model [30, 31].
Phenomenologically, the physical properties of such an (almost) invisible axion such as
its mass and the couplings to standard model particles (quarks, leptons, gauge bosons)
are governed by its expectedly large decay constant, which is traditionally estimated as
being [4, 15, 16, 32]

109 GeV . fa . 1012 GeV , (1.3)

such that the axion mass [33, 34]

ma ≈ 5.7
(

1012 GeV
fa

)
× 10−6 eV (1.4)
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presumably would be somewhere between a few µeV and 0.1 eV. The lifetime of the QCD
axion, which may decay into two photons, is incredibly large [33]

τa ≈
(1 eV
ma

)5
× 1024 s . (1.5)

Note that the traditional axion window, eq. (1.3), is set in order to match cold dark
matter requirements of the canonical invisible axion models that solve the strong CP -
problem. However, axions and axion-like particles have been considered also in the context
of several other models with decay constants considerably smaller or larger than the window
of eq. (1.3). For example, in the case of hadronic axions a decay constant as small as
fa ≈ 106 GeV has been proposed [35], while in string theories axions and axion-like particles
might appear at the GUT or even the Planck scale, i.e. 1015 GeV . fa . 1018 GeV [36].

As a consequence of its (model-dependent) coupling to standard model particles, the
axion of course also couples to composite particles such as mesons or baryons. One possible
method of estimating constraints on the axion decay constant (or equivalently its mass)
rests upon this coupling to baryons, in particular to nucleons, namely through nuclear
bremsstrahlung processes in stellar objects [37–51] (see also the overviews [4, 33, 52, 53]).
The leading order aN coupling has been derived several times since the early days [23,
35, 54–56]. More recently, this leading order coupling has been reexamined in ref. [57].
Moreover, such an analysis has been carried out up-to-and-including O(p3) in SU(2) heavy
baryon chiral perturbation theory (HBCHPT) in our previous work [58], where p denotes
a small parameter (see below in section 2.2).

In this paper, we extend these previous studies using SU(3) HBCHPT in two regards:
(i) we extend the calculations of the axion-nucleon couplings to the SU(3) case, up-to-and-
including O(p3), and (ii) we derive the couplings of the axion to the full ground state baryon
octet (section 4). At this point one might wonder whether this extension is indeed useful
given the fact that the most relevant coupling of the axion to baryons, i.e. the coupling
to nucleons, is already known to good precision in the literature cited above, certainly
precise enough for any phenomenological purpose. In this sense, the present study on
the one hand is of rather theoretical interest, unraveling the explicit NNLO structure
of the axion-nucleon coupling explicitly respecting the strange quark mass dependence.
On the other hand, however, extending the analysis to the SU(3) case, we show that
the traditional “invisible” axion also significantly couples to hyperons which has further
phenomenological implications, since it has been suggested that hyperons might exist in
the cores of neutron stars [59–86]. While it is a matter of ongoing research whether the
seemingly energetically inevitable existence of hyperons in dense cores are compatible with
the observed maximum masses of neutron stars (this question is related to the expected
softening of the equation of state and known in the literature as “hyperon puzzle”), it is
clear that approaches to constrain axion properties from cooling of neutron stars based
on axion-nucleon bremsstrahlung alone might turn out to be insufficient. Depending on
the underlying model and parameter sets, particularly the Λ and the Σ− might appear in
significant fractions of the total baryon number. As will be shown in this study, the axion
coupling to these particular hyperons is of a similar order as that to the nucleons (in fact,
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it could even be much larger than that to the neutron depending on the axion models),
suggesting a revision of axion parameter constraints from stellar cooling.

Before performing the calculations of the axion-baryon couplings, we start with the
explicit implementation of our framework and work out its ingredients and building blocks,
which are the main topics of the following section 2. This section ends with some remarks
of the general form of the axion-baryon coupling (section 2.3). The actual calculations of
the axion-baryon couplings up to the leading one-loop level are performed in section 3, and
the results are discussed in section 4.

2 SU(3) chiral perturbation theory with axions: general remarks

2.1 Ingredients from the axion-quark interaction Lagrangian

Consider the general QCD Lagrangian with axions below the electroweak symmetry break-
ing scale [32]

LQCD = LQCD,0 + a

fa

(
g

4π

)2
Tr
[
GµνG̃

µν
]

+ q̄γµγ5
∂µa

2fa
Xqq , (2.1)

where q = (u, d, s, c, b, t)T collects the quark fields and a refers to the axion field with decay
constant fa. The second term is a remnant of the θ-term of eq. (1.1) after the spontaneous
breakdown of the Peccei-Quinn symmetry. Depending on the underlying axion model,
axions might additionally couple directly to the quark fields, which is here present in the
form of the last term. Here, we assume the canonical scenario that the couplings are flavor
conserving at tree-level, i.e. Xq = diag {Xq} is a diagonal 6 × 6 matrix acting in flavor
space, where the Xq’s, q = {u, d, s, c, b, t}, are the coupling constants of the respective
axion-quark interactions. These are given, for instance, by

XKSVZ
q = 0 ,

XDFSZ
u,c,t = 1

3
x−1

x+ x−1 = 1
3 sin2 β ,

XDFSZ
d,s,b = 1

3
x

x+ x−1 = 1
3 cos2 β = 1

3 −X
DFSZ
u,c,t ,

(2.2)

for the KSVZ-type axions and DFSZ-type axions, respectively, where x = cotβ is the
ratio of the vacuum expectation values (VEVs) of the two Higgs doublets within the latter
models. Note that LQCD,0 in eq. (2.1) also contains a quark mass term q̄Mqq, withMq =
diag {mq} being the real, diagonal and γ5-free quark mass matrix.

As usual, it is advisable to perform a transformation on the quark fields,

q → exp
(
iγ5

a

2fa
Qa
)
q , (2.3)

in order to remove the second term of eq. (2.1). Choosing

Qa =
M−1

q〈
M−1

q

〉 ≈ 1
1 + z + w

diag (1, z, w, 0, 0, 0) , (2.4)
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which corresponds to vacuum alignment in the θ-vacuum case, we can avoid the leading
order mass mixing between the axion and the neutral pseudo-Nambu-Goldstone bosons of
the spontaneous breaking of SU(3) chiral symmetry, the π0 and the η, from the beginning.
Here, 〈. . .〉 denotes the trace in flavor space, z = mu/md and w = mu/ms. Now the
axion-quark interaction Lagrangian is given by

La–q = − (q̄LMaqR + h.c.) + q̄γµγ5
∂µa

2fa
(Xq −Qa) q , (2.5)

where qL and qR are the left- and right-handed projections of the quark fields, and

Ma = exp
(
i
a

fa
Qa
)
Mq . (2.6)

Considering only the three-dimensional subspace of flavor space, i.e. q = (u, d, s)T, and
introducing

c(1) = 1
3 (Xu +Xd +Xs − 1) ,

c(3) = 1
2

(
Xu −Xd −

1− z
1 + z + w

)
, (2.7)

c(8) = 1
2
√

3

(
Xu +Xd − 2Xs −

1 + z − 2w
1 + z + w

)
,

we can decompose the matrix Xq − Qa into traceless parts and parts with non-vanishing
trace, so that

La–q =− (q̄LMaqR + h.c.)

+
(
q̄γµγ5

∂µa

2fa

(
c(1)1 + c(3)λ3 + c(8)λ8

)
q

)
q=(u,d,s)T

+
∑

q={c,b,t}

(
q̄γµγ5

∂µa

2fa
Xqq

)
,

(2.8)

where λ3 and λ8 refer to the third and eighth Gell-Mann matrices, respectively. From
this form of the axion-quark interaction Lagrangian, we can directly read off the required
ingredients for the axionic SU(3) heavy baryon chiral Lagrangian, i.e. the external currents

s =Ma ,

aµ = ∂µa

2fa

(
c(3)λ3 + c(8)λ8

)
,

a
(s)
µ,i = ci

∂µa

2fa
1 , i = 1, . . . , 4 .

(2.9)

Here we have set

c1 = c(1) , c2 = Xc , c3 = Xb , c4 = Xt . (2.10)
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Note that in contrast to usual chiral perturbation theory, it is also necessary to add isos-
inglet axial-vector currents a(s)

µ,i in order to preserve the full QCD axion interaction. This
is possible here, as the subtleties that usually arise due to the U(1)A anomaly are absent,
because the model is now anomaly-free.

If one considers also flavor-changing axion-quark couplings at tree-level, Xq would be
non-diagonal. In this case, it is likewise appropriate to decompose Xq −Qa into traceless
parts and parts with non-vanishing trace, such that

aµ = ∂µa

2fa

8∑
i=1

C(i)λi , (2.11)

with C(i) depending on the allowed flavor-changing processes and λi the eight Gell-Mann
matrices. This then would cause baryon conversion processes. At this point we note
that depending on the underlying model Higgs loops may induce off-diagonal couplings,
which would be loop-suppressed but might be relevant due to unsuppressed top Yukawa
couplings [87]. As stated above, we here stick to the most prevalent models excluding such
flavor-changing axion-quark couplings at tree-level.

2.2 Building blocks of the chiral Lagrangian

The framework we use in this paper is chiral perturbation theory (CHPT) including
baryons, meaning the effective field theory of QCD in the low-energy sector. CHPT is
used to explore meson-baryon systems based on a systematic expansion in small mo-
menta and quark masses below the scale of the spontaneous breakdown of chiral symmetry,
Λχ ∼ 1GeV, as first developed by Gasser, Sainio, and Švarc for the two-flavor case [88] and
by Krause for the three-flavor case [89]. However, while baryons can easily be incorporated
into CHPT in a consistent manner respecting all symmetries, the power-counting scheme
engineered to systematically arrange the infinitely many terms allowed by the fundamental
symmetries is spoiled by the fact that the baryon masses mB, which do not vanish in the
chiral limit, are roughly of the same order as Λχ. One way to overcome this problem is
to realize that all mass scales need to be assigned to a scaling in the power counting and
thus to treat the baryons as extremely heavy, static fermions, which is the idea behind
HBCHPT [90–93]. In this scheme, the four momentum of a baryon field is decomposed as

kµ = mBvµ + pµ (2.12)

with the four-velocity vµ subject to the constraint v2 = 1, and pµ a small residual mo-
mentum satisfying (v · p) � mB. After integrating out the heavy degrees of freedom,
the resulting Lagrangian is expressed in terms of the heavy baryon field B, which is now
characterized by a fixed velocity vµ (for convenience, we refrain from writing Bv to explic-
itly mark the v dependence). Additionally, it is possible to simplify the Dirac algebra by
expressing any Dirac bilinear by means of vµ and the Pauli-Lubanski spin operator

Sµ = i

2γ5σµνv
ν , (2.13)
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which satisfies the relations

{Sµ, Sν} = 1
2(vµvν − gµν) , [Sµ, Sν ] = iεµνρσv

ρSσ , (v · S) = 0 , S2 = 1− d
4 , (2.14)

where the last one is valid in d spacetime dimensions. In eq. (2.14) and in what follows,
[ , ] refers to the commutator and { , } to the anticommutator.

Any term in the effective Lagrangian consists of a number of elements from a small
set of basic building blocks, from which we will present those that are relevant for axionic
SU(3) HBCHPT. In this three-flavor case, the ground state baryon octet consisting of the
nucleons p and n and the hyperons Σ, Λ, and Ξ are collected in a single 3× 3 matrix

B =


1√
2Σ3 + 1√

6Λ8 Σ+ p

Σ− − 1√
2Σ3 + 1√

6Λ8 n

Ξ− Ξ0 − 2√
6Λ8

 , (2.15)

where

Σ3 = cos ε Σ0 − sin ε Λ ,
Λ8 = sin ε Σ0 + cos ε Λ .

(2.16)

Equation (2.15) corresponds to the adjoint representation of SU(3). Due to isospin break-
ing, the physical Σ0 and Λ are mixed states made of the Σ3 and Λ8. This mixing is usually
parameterized by the mixing angle ε and one has

tan 2ε = 〈λ3Mq〉
〈λ8Mq〉

. (2.17)

The pseudoscalar mesons, the pseudo-Nambu-Goldstone bosons of the spontaneous break-
down of chiral symmetry, appear in the Lagrangian in form of a unitary matrix

u =
√
U = exp

(
i

Φ
2Fp

)
, (2.18)

where Fp is the pseudoscalar decay constant in the chiral limit and Φ is a Hermitian 3× 3
matrix given by

Φ =
√

2


1√
2π3 + 1√

6η8 π+ K+

π− − 1√
2π3 + 1√

6η8 K0

K− K̄0 − 2√
6η8

 . (2.19)

Again, the physical mass eigenstates of the neutral particles of the diagonal are mixed
states as a consequence of isospin breaking effects and one has

π3 = cos ε π0 − sin ε η ,
η8 = sin ε π0 + cos ε η .

(2.20)
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Using the leading order meson masses,

M2
π± = B0(mu +md) ,

M2
π0 = B0(mu +md) + 2

3B0(mu +md − 2ms)
sin2 ε

cos 2ε ,

M2
K± = B0(mu +ms) ,

M2
K0 = B0(md +ms) ,

M2
η = 1

3B0(mu +md + 4ms)−
2
3B0(mu +md − 2ms)

sin2 ε

cos 2ε ,

(2.21)

where B0 is a parameter from the O(p2) meson Lagrangian related to the scalar quark
condensate. One can further derive

sin 2ε = 2√
3
M2
K± −M2

K0

M2
π0 −M2

η

,

cos 2ε = 2
3

2M2
π± −M2

K± −M2
K0

M2
π0 −M2

η

,

(2.22)

using eq. (2.17), which is valid at leading order.
Any other particle such as the axion enters the theory in form of an external current. In

the present case, we need five axial-vector currents aµ and a(s)
µ,i, i = 1, . . . , 4, corresponding

to the isovector and isoscalar parts of the axion-matter interaction; compare eq. (2.9).
Furthermore, a scalar external field s is needed to account for the explicit chiral symmetry
breaking due to the light quark masses. Setting χ = 2B0s, it is then convenient to define

uµ = i
[
u†∂µu− u∂µu† − iu†aµu− iuaµu†

]
,

uµ,i = i
[
−iu†a(s)

µ,iu− iua
(s)
µ,iu

†
]

= 2a(s)
µ,i ,

χ± = u†χu† ± uχ†u ,

(2.23)

which all transform in the same way under chiral transformations. Additionally, one defines
the chiral covariant derivative

[Dµ, B] = ∂µB + [Γµ, B] , (2.24)

where
Γµ = 1

2
[
u†∂µu+ u∂µu

† − iu†aµu+ iuaµu
†
]

(2.25)

is the chiral connection. Assigning systematically a chiral dimension p to these building
blocks in order to establish the power-counting method mentioned above, the effective
Lagrangian is constructed by considering all combinations allowed by the underlying sym-
metries. The terms of the meson-baryon Lagrangian then can be arranged according to
the chiral dimension,

LΦB = L(1)
ΦB + L(2)

ΦB + L(3)
ΦB + · · ·+ L(2)

Φ + L(4)
Φ + . . . , (2.26)
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where the superscript “(i)” denotes the Lagrangian containing all terms of O(pi). In the
case of the purely mesonic Lagrangians L(i)

Φ , i is restricted to even numbers. Chiral loops
start contributing at O(p3) (see section 3.6), which means that L(3)

ΦB contains a number of
low-energy constants and counter-terms needed for the renormalization (ch. 3.4 and 3.5).
Note that in non-relativistic HBCHPT the Lagrangian (2.26) contains an inverse power
series in mB, the average octet mass in the chiral limit, which starts contributing at O(p2)
(see section 3.2). The leading order meson-baryon Lagrangian is given by

L(1)
ΦB =

〈
iB̄vµ [Dµ, B]

〉
+D

〈
B̄Sµ {uµ, B}

〉
+ F

〈
B̄Sµ [uµ, B]

〉
+Di

〈
B̄Sµuµ,iB

〉
, (2.27)

which in contrast to the two-flavor case contains two isovector axial-vector coupling con-
stants D and F , and in the present case of axionic HBCHPT the coupling constants Di to
account for the isoscalar interactions.

2.3 General form of the axion-baryon coupling

For any process BB → BA+a, where BA and BB denote arbitrary baryons and a an axion,
the general Feynman rule for the vertex in the baryon rest frame has the form

= GaAB (S · q) , (2.28)

where qµ is the four-momentum of the outgoing axion. The coupling constant GaAB consists
of a power series in 1/fa

GaAB = − 1
fa
gaAB +O

( 1
f2
a

)
. (2.29)

Due to the expected huge value of fa, it is sufficient to determine the leading order term
∝ gaAB/fa, where

gaAB = g
(1)
aAB + g

(2)
aAB + g

(3)
aAB + . . . (2.30)

can be expanded according to the power counting rules of HBCHPT. Here in particular

g
(1)
aAB = gLO, tree

aAB ,

g
(2)
aAB = g

1/mB
aAB ,

g
(3)
aAB = gN

2LO, tree
aAB + g

1/m2
B

aAB + gLO, loop
aAB ,

(2.31)

where gLOaAB and gN
2LO

aAB refer to the contributions from the leading and next-to-next-to-
leading order chiral Lagrangian, i.e. from L(1)

ΦB and L(3)
ΦB of eq. (2.26), respectively. Further-

more, g1/mB
aAB and g1/m2

B
aAB refer to the O(m−1

B ) and O(m−2
B ) contributions from the expansion

in the average baryon mass in the chiral limit mB, which additionally appear in HBCHPT
(see section 3.2). In this paper, we will determine each of these contributions to gaAB up
to O

(
p3).

As we work in the physical basis, A and B in GaAB and gaAB can be understood as
SU(3) indices running from 1 to 8 that directly relate to the physical baryon fields. Ga44, for
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instance, thus gives the axion-proton coupling Gapp, whereas Ga66 gives the axion-neutron
coupling Gann (see appendix A). In this basis, the matrix of GaAB is mostly diagonal as
we exclude flavor-changing axion-quark couplings, i.e. GaAB = 0 for A 6= B, with the only
exception of Ga38 = Ga83, i.e. GaΣ0Λ, which is related to the Σ0–Λ mixing.

3 Determining the axion-baryon coupling

3.1 Leading order: tree level contributions

From the Lagrangian eq. (2.27), we can determine the leading order axion-baryon coupling
by inserting1

Γµ = 0 ,

uµ = ∂µa

fa

(
c(3)λ3 + c(8)λ8

)
,

uµ,i = ci
∂µa

fa
1 ,

(3.1)

which gives

L(1),int
ΦB = gAB

fa
B̄A (S · ∂a)BB , (3.2)

where A and B are SU(3) indices in the physical basis (see appendix A). Here we have
defined

gAB = 1
2

{
D
(
c(3)

〈
λ̃†A

{
λ3, λ̃B

}〉
+ c(8)

〈
λ̃†A

{
λ8, λ̃B

}〉)
+ F

(
c(3)

〈
λ̃†A

[
λ3, λ̃B

]〉
+ c(8)

〈
λ̃†A

[
λ8, λ̃B

]〉)
+ 2ciDiδAB

}
.

(3.3)

The matrix elements of gAB are given in table 4 in appendix B. As we are working in the
physical basis including the Σ0–Λ mixing, gAB actually includes effects of O(p2). The pure
leading order axion-baryon coupling is found by setting ε = 0, i.e. by replacing λ̃A/B →
λ̂A/B, see eq. (A.14) of appendix A. In this case, λ3 and λ8 can be replaced by λ̂3 and λ̂8 so
that the coupling can be expressed by means of the structure constants f̂ABC and d̂ABC :

g0
AB = gAB|ε=0 = c(3)

(
Dd̂AB3 − F f̂AB3

)
+ c(8)

(
Dd̂AB8 − F f̂AB8

)
+ ciD

iδAB . (3.4)

It is hence clear that g(1)
aAB in eq. (2.30) is simply given by

g
(1)
aAB = g0

AB. (3.5)

1Note that in our previous work [58], there is a typo in the corresponding SU(2) equations, i.e. eqs. (3.16)
and (3.21): ũµ,i is not given by ũµ,i = ci

∂µa

fa
τ3. The correct expression is ũµ,i = ci

∂µa

fa
1.
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3.2 Expansion in the baryon mass

The Lagrangian containing the corrections due to the finite baryon masses mB in the
heavy-baryon expansion up to O

(
p3) corresponding to terms proportional to 1/mB and

1/m2
B is given by [93]

L1/mB = B̄A

{
1

2mB
γ0
[
BAC(1)

]†
γ0BCB(1) −

1
4m2

B

γ0
[
BAC(1)

]†
γ0ACD(1) B

DB
(1)

}
BB . (3.6)

Here

AAB(1) = 1
2

(〈
λ̃†A

[
i (v · D) , λ̃B

]〉
+D

〈
λ̃†A

{
(S · u) , λ̃B

}〉
+ F

〈
λ̃†A

[
(S · u) , λ̃B

]〉
+Di

〈
λ̃†A (S · ui) λ̃B

〉)
, (3.7)

and

BAB(1) = 1
2

(〈
λ̃†A

[
iγµD⊥µ , λ̃B

]〉
− D

2
〈
λ̃†A

{
(v · u) γ5, λ̃B

}〉

−F2
〈
λ̃†A

[
(v · u) γ5, λ̃B

]〉
− Di

2
〈
λ̃†A (v · ui) γ5λ̃B

〉)
, (3.8)

where for any four-vector xµ
x⊥µ = vµ (v · x)− xµ . (3.9)

In the present case of axionic HBCHPT, we find

AAB(1) = i (v · ∂) δAB + 1
fa
gAB (S · ∂a) , (3.10)

BAB(1) = iγµ∂⊥µ δAB −
1

2fa
gAB (v · ∂a) γ5 , (3.11)

with gAB as defined in eq. (3.3), so that

L1/mB = 1
fa
B̄A

{
igAB
2mB

{(S · ∂) , (v · ∂a)}+ gAB
4m2

B

[
− ∂µ (S · ∂a) ∂µ + (v · ∂) (S · ∂a) (v · ∂)

− ({(S · ∂) , (v · ∂a)} (v · ∂) + h.c.)

+ ((S · ∂) (∂a · ∂) + h.c.)
]}
BB . (3.12)

Let p be the momentum of the incoming baryon, p′ the momentum of the outgoing baryon,
and ω(′) =

(
v · p(′)

)
, then the resulting vertex Feynman rule reads

=− gAB
fa

{
1

2mB

(
ω − ω′

)
− 1

4m2
B

(
ω2 − ω′2 + ωω′ − p2

)}
(S · q)

+ gAB
fa

{
1
mB

(
ω − ω′

)
− 1

2m2
B

(
ω2 − ω′2 − 1

2
(
p2 − p′2

))}
(S · p) , (3.13)
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which is in complete analogy to the SU(2) case [58]. In the baryon rest frame with p = 0,
ω = 0, v = (1, 0, 0, 0)T, and ω′ = (v · p′) = − (v · q) = −q0 � mB, where q0 is the
relativistic energy of the outgoing axion, we finally find (see eqs. (2.30) and (2.31))

gLO, tree
aAB + g

1/mB
aAB + g

1/m2
B

aAB = gAB

{
1 + q0

2mB
+ q2

0
4m2

B

}
. (3.14)

3.3 Next-to-next-to-leading order: contributions from χ−

At next-to-next-to-leading order, there are several contributions that have to be considered.
We can differentiate terms with finite low-energy constants (LECs) that are ∝ χ−, terms
with LECs having finite and ultraviolet (UV) divergent pieces ∝ χ+, and terms proportional
some LECs that have no finite pieces serving as counter-terms to cancel UV divergences
from the loop contributions. We start with the former.

Up to O (1/fa), χ−, see eqs. (2.6) and (2.23), can be written as

χ− =
4iM2

π±

fa

z

(1 + z)2

(
1 + w

1 + z

)−1
a1 , (3.15)

where M2
π± is the leading order mass of the charged pions given in eq. (2.21). The con-

tributing terms of L(3)
ΦB are (here and in the following section, we enumerate the LECs

according to the list of terms in ref. [95])

Lχ− =− id2
(〈(

∂B̄ · S
)
χ−B

〉
+
〈
B̄χ−(S · ∂B)

〉)
− id3

(〈(
∂B̄ · S

)
〈χ−〉B

〉
+
〈
B̄ 〈χ−〉 (S · ∂B)

〉)
. (3.16)

Inserting eq. (3.15) yields

=
4M2

π±

fa

z

(1 + z)2

(
1 + w

1 + z

)−1
(d2 + 3d3) δAB (S · q) . (3.17)

The reason for writing the coupling in this way is to match it to the corresponding terms
in the SU(2) case, which are given by [58]

=
4M2

π±

fa

z

(1 + z)2 (d18 + 2d19) (S · q) , (3.18)

where N is the nucleon field, and d18 and d19 are LECs from the next-to-next-to-leading
order SU(2) πN Lagrangian [96]. Apart from a substitution of the LECs, the main dif-
ference between the SU(3) case, eq. (3.17), and the SU(2) case, eq. (3.18), is the explicit
effect of the strange quark mass ms in the factor (1 +w/(1 + z))−1, which reduces to unity
at ms →∞, i.e. w → 0. In the SU(3) case, the finite value of w accounts for a correction
of about two percent.
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3.4 Next-to-next-to-leading order: contributions from χ+

From eqs. (2.6) and (2.23), one can readily determine that

χ+ = 4B0Mq +O
(
f−2
a

)
. (3.19)

The relevant terms from L(3)
ΦB are [95]

Lχ+ = d41(λ)
(〈
B̄Sµ [uµ, [χ+, B]]

〉
+
〈
B̄Sµ [χ+, [uµ, B]]

〉)
+ d42(λ)

(〈
B̄Sµ [uµ, {χ+, B}]

〉
+
〈
B̄Sµ {χ+, [uµ, B]}

〉)
+ d43(λ)

(〈
B̄Sµ {uµ, [χ+, B]}

〉
+
〈
B̄Sµ [χ+, {uµ, B}]

〉)
+ d44(λ)

(〈
B̄Sµ {uµ, {χ+, B}}

〉
+
〈
B̄Sµ {χ+, {uµ, B}}

〉)
+ d45(λ)

〈
B̄Sµ [uµ, B]

〉
〈χ+〉+ d46(λ)

〈
B̄Sµ {uµ, B}

〉
〈χ+〉

+ d47(λ)
〈
B̄SµB

〉
〈uµχ+〉+ di43(λ)

〈
B̄ (S · ui) [χ+, B]

〉
+ di44(λ)

〈
B̄ (S · ui) {χ+, B}

〉
+ di46(λ)

〈
B̄ (S · ui)B

〉
〈χ+〉 .

(3.20)

The LECs depend on the scale λ and are given by

d
(i)
k (λ) = d

(i),r
k (λ) + β

(i)
k

F 2
p

L(λ) , k = {41, . . . , 47} . (3.21)

In this equation, d(i),r
k (λ) refer to the renormalized LECs, and L(λ) contains the pole for

spacetime dimension d = 4,

L(λ) = λd−4

(4π)2

( 1
d− 4 −

1
2 [ln(4π)− γ + 1]

)
, (3.22)

where γ is the Euler-Mascheroni constant. The β-functions are set to cancel the divergences
of the one-loop functional, as discussed below. We write the resulting tree-level vertex as

= −
4M2

π±

fa

z

1 + z
d̂AB(λ) (S · q) , (3.23)

where we have set

d̂AB(λ) = 1
2mu

(
c(3)

{
d41(λ)

(〈
λ̂†A

[
λ3,

[
Mq, λ̂B

]]〉
+
〈
λ̂†A

[
Mq,

[
λ3, λ̂B

]]〉)
+ d42(λ)

(〈
λ̂†A

[
λ3,

{
Mq, λ̂B

}]〉
+
〈
λ̂†A

{
Mq,

[
λ3, λ̂B

]}〉)
+ d43(λ)

(〈
λ̂†A

{
λ3,

[
Mq, λ̂B

]}〉
+
〈
λ̂†A

[
Mq,

{
λ3, λ̂B

}]〉)
+ d44(λ)

(〈
λ̂†A

{
λ3,

{
Mq, λ̂B

}}〉
+
〈
λ̂†A

{
Mq,

{
λ3, λ̂B

}}〉)
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+ d45(λ)
〈
λ̂†A

[
λ3, λ̂B

]〉
〈Mq〉+ d46(λ)

〈
λ̂†A

{
λ3, λ̂B

}〉
〈Mq〉

+ 2d47(λ)δAB 〈λ3Mq〉
}

+ c(8)
{
d41(λ)

(〈
λ̂†A

[
λ8,

[
Mq, λ̂B

]]〉
+
〈
λ̂†A

[
Mq,

[
λ8, λ̂B

]]〉)
+ d42(λ)

(〈
λ̂†A

[
λ8,

{
Mq, λ̂B

}]〉
+
〈
λ̂†A

{
Mq,

[
λ8, λ̂B

]}〉)
+ d43(λ)

(〈
λ̂†A

{
λ8,

[
Mq, λ̂B

]}〉
+
〈
λ̂†A

[
Mq,

{
λ8, λ̂B

}]〉)
+ d44(λ)

(〈
λ̂†A

{
λ8,

{
Mq, λ̂B

}}〉
+
〈
λ̂†A

{
Mq,

{
λ8, λ̂B

}}〉)
+ d45(λ)

〈
λ̂†A

[
λ8, λ̂B

]〉
〈Mq〉+ d46(λ)

〈
λ̂†A

{
λ8, λ̂B

}〉
〈Mq〉

+ 2d47(λ)δAB 〈λ8Mq〉
}

+ ci

{
di43(λ)

〈
λ̂A
[
Mq, λ̂B

]〉
+ di44(λ)

〈
λ̂A
{
Mq, λ̂B

}〉

+ 2di46(λ)δAB 〈Mq〉
})

. (3.24)

The matrix elements of d̂AB are given in eqs. (B.1)–(B.9) of appendix B.

3.5 Next-to-next-to-leading order: counter-terms

The counter-terms needed for the renormalization have been worked out in ref. [93]. For
the present case, we need the terms i = {36, 37, 38, 39} from this paper, which are given by

Lc.t. = d36(λ)
〈(
v · ∂B̄

)
{(S · u) , (v · ∂B)}

〉
+ d37(λ)

〈(
v · ∂B̄

)
[(S · u) , (v · ∂B)]

〉
+ d38(λ)

〈
B̄ {[(v · ∂) , [(v · ∂) , (S · u)]] , B}

〉
+ d39(λ)

〈
B̄ [[(v · ∂) , [(v · ∂) , (S · u)]] , B]

〉
+ di36(λ)

〈(
v · ∂B̄

)
(S · ui) (v · ∂B)

〉
+ di38(λ)

〈
B̄ [(v · ∂) , [(v · ∂) , (S · ui)]]B

〉
,

(3.25)

where we have added two terms in order to account for the isoscalar interactions. The
LECs have no finite part, i.e.

d
(i)
k (λ) = β

(i)
k

F 2
p

L(λ) , k = {36, . . . , 39} . (3.26)

Their contribution to the tree-level vertex is given by

= − 1
fa
d̂c.t.AB(λ) (S · q) , (3.27)

– 14 –



J
H
E
P
0
8
(
2
0
2
1
)
0
2
4

Figure 1. Non-vanishing meson loop contributions to BB → BA + a.

with

d̂c.t.AB(λ) =
(
d36(λ)ωω′ − d38(λ)

(
ω − ω′

)2) (
c(3)d̂AB3 + c(8)d̂AB8

)
−
(
d37(λ)ωω′ − d39(λ)

(
ω − ω′

)2) (
c(3)f̂AB3 + c(8)f̂AB8

)
+
(
di36(λ)ωω′ − di38(λ)

(
ω − ω′

)2)
ciδAB .

(3.28)

3.6 Loops

There are only two non-vanishing single meson loops that contribute to the O(p3) axion-
baryon vertex at O(1/fa), which are shown in figure 1. In this figure, mesons are identi-
fied by means of the SU(3) index C in the physical basis including the π0–η mixing, cf.
eqs. (2.19) and (A.3). Note that the potential diagrams with a aΦBB vertex and a meson
line connected to one baryon leg vanish because (v · S) = 0, see eq. (2.14), as has been
shown in ref. [58] for the corresponding diagrams in the SU(2) case, which have the same
topology.

3.6.1 Diagram (a)

Using the leading order meson-baryon vertex rule, one finds

(a) = 1
faF 2

p

∑
C

g
(a)
ABCS

µ (S · q)Sν 1
i

∫ ddk
(2π)d

kµkν
(k2−M2

ΦC + iη)(ω′− v · k+ iη)(ω− v · k+ iη)

= 1
6fa

1
(4πFp)2

∑
C

g
(a)
ABC

{
−M2

ΦC

+ 1
ω−ω′

(
ω3−ω′3 + 2

[(
M2

ΦC −ω
2
) 3

2 arccos −ω
MΦC

−
(
M2

ΦC −ω
′2
) 3

2 arccos −ω
′

MΦC

])

+
(
3M2

ΦC − 2
(
ω−ω′

)2− 6ωω′
)(

(4π)2L(λ) + ln MΦC
λ

)}
(S · q) ,

(3.29)
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where we have applied dimensional regularization and used the properties in eq. (2.14).
Moreover, we have defined

g
(a)
ABC = 1

4
∑
D,E

(
D
〈
λ̂†A

{
λ̃C , λ̂E

}〉
+ F

〈
λ̂†A

[
λ̃C , λ̂E

]〉)
g0
ED

×
(
D
〈
λ̂†D

{
λ̃†C , λ̂B

}〉
+ F

〈
λ̂†D

[
λ̃†C , λ̂B

]〉)
,

(3.30)

in order to handle all meson loops for all baryons BA and BB at the same time. Here g0
ED

refers to eq. (3.4), the leading order axion-baryon coupling. Equation (3.29) contains UV
divergences, which will be treated below in section 3.6.3. The expression for diagram (a)
can be simplified by considering the baryon rest frame and expanding around q0 � MΦC
for all mesons ΦC , which yields

(a) = 1
6fa

∑
C

g
(a)
ABC

(
MΦC
4πFp

)2
1 + 3π

2
q0
MΦC

− 5
3

(
q0
MΦC

)2

+

3− 2
(

q0
MΦC

)2
((4π)2L(λ) + ln MΦC

λ

) (S · q) .

(3.31)

3.6.2 Diagram (b)

Expanding u up to order Φ2 yields

uµ = − ∂µa

8faF 2
p

(
c(3) [Φ, [Φ, λ3]] + c(8) [Φ, [Φ, λ8]]

)
, (3.32)

so the vertex rule for the aBABBΦCΦC-vertex in the physical basis derived from L(1)
ΦB can

be written as
1

faF 2
p

g
(b)
ABC (S · q) , (3.33)

where we have defined the coupling constant

g
(b)
ABC = 1

8
{
c(3)

(
D
〈
λ̂†A

{[
λ̃C ,

[
λ̃†C , λ3

]]
, λ̂B

}〉
+ F

〈
λ̂†A

[[
λ̃C ,

[
λ̃†C , λ3

]]
, λ̂B

]〉)
+c(8)

(
D
〈
λ̂†A

{[
λ̃C ,

[
λ̃†C , λ8

]]
, λ̂B

}〉
+ F

〈
λ̂†A

[[
λ̃C ,

[
λ̃†C , λ8

]]
, λ̂B

]〉)}
.

(3.34)

In fact, this vertex and thus diagram (b) is independent of the mixing angle ε so one might
as well substitute λ̃C → λ̂C in eq. (3.34). Therefore, one can also express the coupling
constant by means of the structure constants defined in eqs. (A.9) and (A.14),

g
(b)
ABC = 1

4
∑
D,E

f̂ECD
(
c(3)f̂3CD

[
Dd̂AEB + F f̂AEB

]
+ c(8)f̂8CD

[
Dd̂AEB + F f̂AEB

])
.

(3.35)
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The loops of diagram (b) for all mesons ΦC can then be calculated as

(b) = 1
2faF 2

p

(S · q)
∑
C

g
(b)
ABC

1
i

∫ ddk
(2π)d

1
k2 −M2

ΦC + iη

= − 1
faF 2

p

(S · q)
∑
C

g
(b)
ABCM

2
ΦC

(
L(λ) + 1

(4π)2 ln MΦc
λ

)
.

(3.36)

3.6.3 Renormalization

The divergences appearing in the meson loop calculations in dimensional regularization are
canceled by setting appropriate β functions for the LECs appearing in d̂AB(λ), eq. (3.24),
and d̂c.t.AB(λ), eq. (3.27),

β36 = 2D
(
D2 + 3F 2

)
, βi36 = −4

3D
i
(
13D2 + 9F 2

)
,

β37 = 2
3F

(
5D2 − 9F 2

)
, β38 = −2

3D
(
D2 + 3F 2

)
,

βi38 = 4
9D

i
(
13D2 + 9F 2

)
, β39 = −2

9F
(
5D2 − 9F 2

)
,

β41 = − 1
48D

(
9D2 + 7F 2 − 9

)
, β42 = − 3

16F
(
D2 − F 2 − 1

)
,

β43 = − 1
48F

(
7D2 + 9F 2 − 9

)
, βi43 = −5

6DFD
i ,

β44 = − 1
48D

(
23D2 + 9F 2 − 9

)
, βi44 = −1

4D
i
(
D2 − 3F 2

)
,

β45 = − 1
36F

(
D2 − 9F 2 − 9

)
, β46 = 1

36D
(
17D2 − 9F 2 + 9

)
,

βi46 = 1
18D

i
(
13D2 + 9F 2

)
β47 = 1

2D
(
D2 + 3F 2 − 1

)
, (3.37)

of which the βk’s are in accordance with the ones given in ref. [93], and the βik’s have been
worked out here for the first time. With that, the full renormalized O(p3) contribution
reads

gN
2LO, tree

aAB +gLO, loop
aAB =

4M2
π±z

1 + z

(
d̂rAB(λ)− d2 + 3d3

1 + z + w
δAB

)
− 1

27g
loop,r
AB +gloop,scAB (λ) , (3.38)

where we have neglected terms of O (q0/MΦC ). Moreover, d̂rAB refers to eq. (3.24) with
renormalized LECs, and

gloop,rAB = 9
2
∑
C

g
(a)
ABC

(
MΦC
4πFp

)2

, (3.39)

gloop,scAB (λ) =
∑
C

(
−1

2g
(a)
ABC + g

(b)
ABC

)(
MΦC
4πFp

)2

ln MΦC
λ

. (3.40)

The matrix elements of gloop,rAB are given in eqs. (B.10)–(B.18) of appendix B.
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4 Results

4.1 Leading order axion-baryon coupling

Using the nucleon matrix elements ∆q defined by sµ∆q = 〈p|q̄γµγ5q|p〉, sµ being the spin
of the proton, we set

(D + F ) = gA = ∆u−∆d , −(D − 3F ) = ∆u+ ∆d− 2∆s , (4.1)
D1 = ∆u+ ∆d+ ∆s , Di = ∆qi , for i = {2, 3, 4}, ∆qi = {∆c,∆b,∆t} ,

where the respective baryon matrix elements are related to the ones from the nucleons by
flavor symmetry. From now on, we neglect terms ∝ {∆c,∆b,∆t}, which basically represent
sea quark effects beyond the numerical uncertainties of the dominant contributions of the
up, down, and strange quarks (at least in the standard DFSZ scenario, where the couplings
to heavy quarks are of the same order as the couplings to the light quarks; if alternatively
the couplings Xc, Xb, and Xt or only one or two of them were much stronger than Xu, Xd,
and Xs, these sea quark terms could not be ignored any longer). Inserting this into the
result for the leading order axion-baryon coupling constant g(1)

aAB, eq. (3.4) (see also table 4
in appendix B), we find

g
(1)
aΣ+Σ+ = −∆u+ z∆s+ w∆d

1 + z + w
+ ∆uXu + ∆sXd + ∆dXs ,

g
(1)
aΣ−Σ− = −∆s+ z∆u+ w∆d

1 + z + w
+ ∆sXu + ∆uXd + ∆dXs ,

g
(1)
aΣ0Σ0 = −

∆u+∆s
2 (1 + z) + w∆d

1 + z + w
+ ∆u+ ∆s

2 (Xu +Xd) + ∆dXs ,

g(1)
app = −∆u+ z∆d+ w∆s

1 + z + w
+ ∆uXu + ∆dXd + ∆sXs ,

g
(1)
aΞ−Ξ− = −∆s+ z∆d+ w∆u

1 + z + w
+ ∆sXu + ∆dXd + ∆uXs ,

g(1)
ann = −∆d+ z∆u+ w∆s

1 + z + w
+ ∆dXu + ∆uXd + ∆sXs ,

g
(1)
aΞ0Ξ0 = −∆d+ z∆s+ w∆u

1 + z + w
+ ∆dXu + ∆sXd + ∆uXs ,

g
(1)
aΛΛ = −

∆u+4∆d+∆s
6 (1 + z) + 2∆u−∆d+2∆s

3 w

1 + z + w

+ ∆u+ 4∆d+ ∆s
6 (Xu +Xd) + 2∆u−∆d+ 2∆s

3 Xs ,

g
(1)
aΣ0Λ = −

∆u−2∆d+∆s
2
√

3 (1− z)
1 + z + w

+ ∆u− 2∆d+ ∆s
2
√

3
(Xu −Xd) .

(4.2)

In particular, g(1)
app and g(1)

ann are exactly the same as in the SU(2) case. Using [97]

∆u = 0.847(50) , ∆d = −0.407(34) , ∆s = −0.035(13) , (4.3)
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which correspond to

D = 1
2∆u−∆d+ 1

2∆s = 0.813(43) ,

F = 1
2∆u− 1

2∆s = 0.441(26) ,

D1 = 0.405(62) ,

(4.4)

and [97]
z = 0.485(19) , w = 0.025(1) , (4.5)

we obtain

g
(1)
aΣ+Σ+ = −0.543(34) + 0.847(50)Xu − 0.035(13)Xd − 0.407(34)Xs ,

g
(1)
aΣ−Σ− = −0.242(21)− 0.035(13)Xu + 0.847(50)Xd − 0.407(34)Xs ,

g
(1)
aΣ0Σ0 = −0.396(25) + 0.417(25)Xu + 0.395(25)Xd − 0.407(35)Xs ,

g(1)
app = −0.430(36) + 0.847(50)Xu − 0.407(34)Xd − 0.035(13)Xs ,

g
(1)
aΞ−Ξ− = 0.140(15)− 0.035(13)Xu − 0.407(34)Xd + 0.847(50)Xs ,

g(1)
ann = −0.002(30)− 0.407(34)Xu + 0.847(50)Xd − 0.035(13)Xs ,

g
(1)
aΞ0Ξ0 = 0.267(23)− 0.407(34)Xu − 0.035(13)Xd + 0.847(50)Xs ,

g
(1)
aΛΛ = 0.126(25)− 0.147(25)Xu − 0.125(25)Xd + 0.677(35)Xs ,

g
(1)
aΣ0Λ = −0.153(10) + 0.463(25)Xu − 0.476(25)Xd + 0.013(1)Xs ,

(4.6)

where we also considered corrections from the non-vanishing mixing angle ε related to
isospin breaking in the cases of the Σ0 and the Λ (which is why there also appears a term
∝ Xs in g

(1)
aΣ0Λ). In table 1, we list the results for the KSVZ axion, where Xq = 0, and

the DFSZ axion, where the axion-quark couplings Xq depend on the angle β related to
the VEVs of the involved Higgs doublets (see above, eq. (2.2)). In the KSVZ model, the
strongest couplings are hence to be expected for the Σ+ and the proton, which is also true
for the DFSZ model at small values of sin2 β (in this region, also the Ξ0 shows a considerably
large coupling with an opposite sign). As noted already in many previous works, the axion-
neutron coupling in some scenarios is strongly suppressed and might even vanish in the
KSVZ model and the DFSZ model at sin2 β ≈ 2/3 (corresponding to x = 1/

√
2, where x is

the ratio of the VEVs of the two Higgs doublets). The axion-neutron coupling is also the
only baryon conserving coupling that might vanish in the DFSZ model, as it is the only
one that changes its sign when varying sin2 β from zero to unity. At sin2 β = 1, also the
Σ0–Λ mixing vertex disappears. At the same value of sin2 β, the couplings are somehow
“harmonized”, i.e. the couplings of the axion to particles of the same strangeness S are
approximately the same, which is due to flavor symmetry. In case of the neutron and
the proton with S = 0 one then has g(1),sin2 β=1

aAB ≈ −0.14, in case of the Σ particles with
S = 1, one has g(1),sin2 β=1

aAB ≈ −0.26, and in case of the two Ξ baryons with S = 2, one has
g

(1),sin2 β=1
aAB ≈ 0.13. The difference among the particles with the same S can be determined
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Process
g

(1)
aAB

KSVZ DFSZ
general sin2 β = 0 sin2 β = 2

3 sin2 β = 1
Σ+ → Σ+ + a −0.543(34) −0.690(36) + 0.430(21) sin2 β −0.690(36) −0.404(36) −0.261(38)
Σ− → Σ− + a −0.242(21) −0.095(29)− 0.158(21) sin2 β −0.095(29) −0.201(23) −0.254(22)
Σ0 → Σ0 + a −0.396(25) −0.400(29) + 0.143(12) sin2 β −0.400(29) −0.305(27) −0.257(27)
p→ p+ a −0.430(36) −0.577(38) + 0.430(21) sin2 β −0.577(38) −0.291(38) −0.147(39)

Ξ− → Ξ− + a 0.140(15) 0.287(25)− 0.158(21) sin2 β 0.287(25) 0.181(17) 0.128(16)
n→ n+ a −0.002(30) 0.269(34)− 0.406(21) sin2 β 0.269(34) −0.002(31) −0.138(22)

Ξ0 → Ξ0 + a 0.267(23) 0.531(29)− 0.406(21) sin2 β 0.531(29) 0.267(25) 0.131(26)
Λ→ Λ + a 0.126(25) 0.310(29)− 0.233(12) sin2 β 0.310(29) 0.155(27) 0.077(26)
Σ0 → Λ + a

−0.153(10) −0.308(13) + 0.309(16) sin2 β −0.308(13) −0.102(11) 0.000(13)
Λ→ Σ0 + a

Table 1. Leading order axion-baryon couplings g(1)
aAB for the KSVZ axion and the DFSZ axion.

as being always

∆g(1),sin2 β=1
aAB = 2− 4z − w

3(1 + z + w) (∆q1 −∆q2) ≈ 0.008 (∆q1 −∆q2) , (4.7)

where AB here denotes particles of the same strangeness, and ∆q1 and ∆q2 depends on the
quark content of these particles, i.e. (∆q1 −∆q2) = (∆s−∆u) in the case of the Σ baryons,
(∆q1 −∆q2) = (∆d−∆u) in the case of the nucleons, and (∆q1 −∆q2) = (∆d−∆s) in the
case of the Ξ particles (note that in cases with Σ0 an additional factor 1/2 and corrections
from ε 6= 0 appear in eq. (4.7)).

4.2 Loop corrections and estimation of the NNLO LECs

As stated already, the results for the leading order axion-nucleon coupling in the Nf = 3
case are entirely in line with the results of the Nf = 2 case, which is also true for the
O
(
p2) and O

(
p3) corrections stemming from the expansion in 1/mB that appear in the

non-relativistic heavy baryon limit, with the only exception that the nucleon mass in the
chiral limit m0 appearing in the SU(2) case is substituted by the average baryon mass in
the chiral limit mB. In the limit of soft axions, i.e. q0 → 0, these terms, see eq. (3.14),
rapidly vanish.

The more significant corrections stem from the one-meson loop contributions, eq. (3.38).
For the calculation of the corresponding matrix elements, we use the physical meson masses
and decay constants [98, 99], Mπ± = 139.57MeV, Mπ0 = 134.98MeV,MK± = 493.68MeV,
MK0 = 497.61MeV,Mη = 547.86MeV, Fπ = 92.1(6)MeV, FK = 110.3(5)MeV, and Fη =
118(9)MeV. Inserting this numerical input, yields

gloopaΣ+Σ+ = 0.096(7)− 0.148(10)Xu − 0.003(5)Xd + 0.202(16)Xs ,

gloopaΣ−Σ− = 0.046(6)− 0.003(5)Xu − 0.148(10)Xd + 0.202(16)Xs ,

gloopaΣ0Σ0 = 0.072(7)− 0.076(8)Xu − 0.076(8)Xd + 0.202(16)Xs ,
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Process
gloopAB

KSVZ DFSZ
general sin2 β = 0 sin2 β = 2

3 sin2 β = 1
Σ+ → Σ+ + a 0.096(7) 0.162(9)− 0.116(7) sin2 β 0.162(9) 0.085(8) 0.046(8)
Σ− → Σ− + a 0.046(6) 0.064(9)− 0.019(7) sin2 β 0.064(9) 0.051(6) 0.045(8)
Σ0 → Σ0 + a 0.072(7) 0.114(9)− 0.068(7) sin2 β 0.114(9) 0.069(8) 0.046(8)
p→ p+ a 0.046(5) 0.100(6)− 0.094(5) sin2 β 0.100(6) 0.038(6) 0.007(6)

Ξ− → Ξ− + a −0.112(8) −0.122(11) + 0.038(8) sin2 β −0.122(11) −0.096(8) −0.083(8)
n→ n+ a −0.028(5) −0.046(7) + 0.051(5) sin2 β −0.046(7) −0.012(6) 0.05(6)

Ξ0 → Ξ0 + a −0.145(11) −0.186(13) + 0.102(8) sin2 β −0.186(13) −0.118(12) −0.084(12)
Λ→ Λ + a −0.095(7) −0.112(8) + 0.050(5) sin2 β −0.112(8) −0.079(7) −0.062(8)
Σ0 → Λ + a 0.030(3) 0.060(4)− 0.059(3) sin2 β 0.060(4) 0.020(3) 0.001(4)
Λ→ Σ0 + a

Table 2. One-meson loop contributions to the axion-baryon couplings gloop
AB , eq. (3.38), for the

KSVZ axion and the DFSZ axion calculated at the scale λ = 1 GeV.

gloopapp = 0.046(5)− 0.119(11)Xu + 0.098(7)Xd + 0.064(8)Xs ,

gloopaΞ−Ξ− = −0.112(8) + 0.086(8)Xu + 0.182(16)Xd − 0.211(16)Xs ,

gloopann = −0.028(5) + 0.098(7)Xu − 0.119(11)Xd + 0.064(8)Xs ,

gloopaΞ0Ξ0 = −0.145(11) + 0.182(16)Xu + 0.086(8)Xd − 0.211(16)Xs ,

gloopaΛΛ = −0.095(7) + 0.099(9)Xu + 0.099(9)Xd − 0.149(9)Xs ,

gloopaΣ0Λ = 0.030(3)− 0.089(7)Xu + 0.089(7)Xd + 0.000(1)Xs , (4.8)

where we have set the scale at λ = 1 GeV. The corresponding results for the KSVZ and
DFSZ models are displayed in table 2. As expected, the loop contributions are indeed
subleading, where the orders of magnitude of the individual terms range between low
O
(
10−1) and O (10−2). Note that just using Fπ or Fp for all the decay constants does not

lead to any notable change in these results since the formal difference is of higher order,
O(p5), in the chiral expansion.

It is remarkable that the loop corrections to the axion-proton vertex are about one
tenth of the full SU(2) result [58], which shows that in this particular case the three-flavor
expansion works similar to the case of the magnetic moments [100], but different to the
baryon masses [101] or weak hyperon decays [102]. Consequently, the largest uncertainty
in these calculations is related to the values of the LECs, as discussed next.

As for the tree-level contributions from the NNLO Lagrangian (see section 3.4), we
stated already that the values of the involved LECs are undetermined hitherto. The scale-
dependent parts ∝ drk(λ) are expected to compensate the scale-dependence of the loop
contributions, such that the actual observable, gaAB, remains scale-independent at O

(
p3).

For the following estimation of these hitherto unknown LECs, we therefore only consider the
scale-independent part such that we can leave aside the scale-dependent loop contributions
in our final estimation of the axion-baryon coupling at O

(
p3). Our understanding of the

problem is a Bayesian one: while formally each LEC may take on any arbitrary value, we
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nevertheless expect that with sufficient probability the LECs are restricted to values that
lead to NNLO contributions to gaAB of roughly the same order as the loop contributions
discussed above. In other words: we assume that these contributions are indeed sub-
leading in comparison to the leading order contributions, which is basically a naturalness
argument [103, 104]. That this assumption is justified in the present case directly follows
from the numerical results of the loop corrections discussed before. This argument is of
course not universally valid, but it is nevertheless appropriate in a Bayesian sense, meaning
that our results from this ansatz can be used as priors in future determinations of the LECs
once suitable experimental or lattice QCD data is available for fitting procedures. Although
it is not expected that the axion-nucleon coupling will be measured experimentally with
sufficient accuracy in the near future, one may use lattice QCD to compute the relevant
couplings by introducing an external isoscalar axial source into the QCD action to mimic
the axion, and compute the corresponding form factors.

In practice, we performed a Monte Carlo sampling of the ten involved LECs dr41, . . . ,
dr47 and di43, di44, and di46 within a reasonable range of O

(
1 GeV−2

)
and extracted those sets

of LECs that lead to NNLO corrections to gaAB of low O
(
10−1). In particular, we set 0.15

as a numerical constraint, which is rather conservative (in view of the loop contributions
given above). The allowed regions for the values of the respective LECs are then given by
probability distributions of Gaußian type centered around zero (as the overall sign of the
NNLO corrections is in principle undetermined from this method). With this approach,
one obtains

dr41 = 0.00(4)GeV−2, dr42 = 0.00(4)GeV−2,

dr43 = 0.00(4)GeV−2, di,r43 = 0.00(11)GeV−2,

dr44 = 0.00(6)GeV−2, di,r44 = 0.00(17)GeV−2, (4.9)
dr45 = 0.00(6)GeV−2, dr46 = 0.00(11)GeV−2,

di,r46 = 0.00(14)GeV−2, dr47 = 0.00(14)GeV−2.

Moreover, one finds that some of the extrapolated probability distributions of the LECs
are correlated. The most important correlation coefficients are given by

corr(dr41, d
r
44) = 0.72 , corr(dr41, d

r
46) = −0.59 ,

corr(dr41, d
r
47) = −0.84 , corr(dr44, d

r
46) = −0.89 ,

corr(dr44, d
r
47) = −0.85 , corr(dr46, d

r
47) = 0.70 ,

corr(dr42, d
r
45) = −0.85 , corr(di,r44 , d

i,r
46 ) = −0.84 ,

while all other correlation coefficients are negligibly small.
If one additionally considers the large-Nc approach, where Nc is the number of colors,

it is to be expected that the LECs for the terms with two flavor traces (dr45,46,47 and
di,r46 ) are suppressed relative to those with only one flavor trace (dr41,42,43,44 and di,r43,44) by
O (1/Nc); see, e.g., refs. [105, 106]. Therefore, we performed another Monte Carlo sampling
for the LECs, where this expectation is taken into account, namely by assigning a larger
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probability to such sets obeying this expected rule in comparison to sets of LECs deviating
from it, which are considered less probable. The result is

dr41 = 0.00(3)GeV−2, dr42 = 0.00(2)GeV−2,

dr43 = 0.00(4)GeV−2, di,r43 = 0.00(10)GeV−2,

dr44 = 0.00(3)GeV−2, di,r44 = 0.00(13)GeV−2,

dr45 = 0.00(1)GeV−2, dr46 = 0.00(1)GeV−2,

di,r46 = 0.00(7)GeV−2, dr47 = 0.00(1)GeV−2.

As expected, the probability distributions of the rather suppressed LECs become consider-
ably thinner, even though it is not excluded that they in reality may achieve higher values.
For the following estimation of the axion-baryon coupling at NNLO, however, we stick to
the less rigid estimation of the LECs given in eq. (4.9).

The last contribution to the O
(
q3) axion-baryon coupling stem from terms ∝ χ−

discussed in section 3.3. From the matching with SU(2), eq. (3.18), we deduce that

(d18 + 2d19)SU(2) = (d2 + 3d3)
(

1 + w

1 + z

)−1
, (4.10)

where neither the value of the LEC d19 from the SU(2) case, nor the values of d2 and d3 from
the SU(3) case are known. The LEC d18 is fixed by the Goldberger-Treiman discrepancy
and given by [107]

d18 = −0.44(24)GeV−2 . (4.11)
Using this matching with SU(2) and applying the same Bayesian approach as described
above, we extrapolate

d2 = −0.45(24)GeV−2 , d3 = 0.15(92)GeV−2 . (4.12)

Finally, we can collect all contributions to estimate the full O
(
p3) axion-baryon couplings

given by

gaAB = gAB +
4M2

π±z

1 + z

(
d̂rAB −

d2 + 3d3
1 + z + w

δAB

)
− 1

27g
loop,r
AB , (4.13)

which results in
gaΣ+Σ+ = −0.547(84) + 0.850(98)Xu − 0.032(88)Xd − 0.455(93)Xs ,

gaΣ−Σ− = −0.245(80)− 0.030(88)Xu + 0.852(99)Xd − 0.456(93)Xs ,

gaΣ0Σ0 = −0.399(78) + 0.420(63)Xu + 0.397(63)Xd − 0.456(93)Xs ,

gapp = −0.432(86) + 0.836(99)Xu − 0.418(91)Xd − 0.053(84)Xs ,

gaΞ−Ξ− = 0.166(79)− 0.083(84)Xu − 0.455(91)Xd + 0.854(97)Xs ,

gann = 0.003(83)− 0.398(90)Xu + 0.856(99)Xd − 0.053(84)Xs ,

gaΞ0Ξ0 = 0.303(81)− 0.424(91)Xu − 0.052(84)Xd + 0.854(96)Xs ,

gaΛΛ = 0.138(87)− 0.159(74)Xu − 0.137(74)Xd + 0.663(92)Xs ,

gaΣ0Λ = −0.161(24) + 0.441(68)Xu − 0.497(68)Xd + 0.012(24)Xs .

(4.14)

The corresponding results for the KSVZ and the DFSZ axion are collected in table 3.
Note that while in the leading order case the uncertainties arise from the errors of the

– 23 –



J
H
E
P
0
8
(
2
0
2
1
)
0
2
4

Process
gaAB

KSVZ DFSZ
general sin2 β = 0 sin2 β = 2

3 sin2 β = 1
Σ+ → Σ+ + a −0.547(84) −0.709(94) + 0.446(54) sin2 β −0.709(94) −0.412(88) −0.263(91)
Σ− → Σ− + a −0.245(80) −0.113(92)− 0.142(54) sin2 β −0.113(92) −0.208(84) −0.255(85)
Σ0 → Σ0 + a −0.399(78) −0.417(87) + 0.158(43) sin2 β −0.417(87) −0.311(80) −0.259(81)
p→ p+ a −0.432(86) −0.589(96) + 0.436(53) sin2 β −0.589(96) −0.298(90) −0.153(92)

Ξ− → Ξ− + a 0.166(79) 0.299(91)− 0.161(52) sin2 β 0.299(91) 0.192(83) 0.138(84)
n→ n+ a 0.003(83) 0.271(94)− 0.400(53) sin2 β 0.271(94) 0.004(87) −0.130(88)

Ξ0 → Ξ0 + a 0.303(81) 0.570(92)− 0.409(52) sin2 β 0.570(92) 0.298(85) 0.162(87)
Λ→ Λ + a 0.138(87) 0.314(96)− 0.228(47) sin2 β 0.314(96) 0.161(90) 0.085(90)
Σ0 → Λ + a

−0.161(24) −0.323(33) + 0.309(32) sin2 β −0.323(33) −0.117(30) −0.014(33)
Λ→ Σ0 + a

Table 3. Axion-baryon couplings gaAB , eq. (4.13), for the KSVZ axion and the DFSZ axion
at O

(
p3).

quark ratios z and w, and the nucleon matrix elements ∆u, ∆d, and ∆s, the uncertainties
in the next-to-next-to-leading order case are dominated by the lack of knowledge of the
involved LECs.

5 Summary

In this paper, we have worked out the axion-baryon coupling in SU(3) HBCHPT up to
O
(
q3) in the chiral power counting and found — in the case of the axion-nucleon coupling

constants — good agreement with the already known results obtained in the SU(2) chiral
approach. One of the most important outcomes of this study is that the axion-baryon
coupling strengths are all of roughly the same order for all members of the baryon octet with
only a few exceptions. The most prominent and well-known example is the axion-neutron
coupling that might vanish in the KSVZ and the DSFZ model for particular values of sin2 β.
Given the fact that the axion couples to hyperons with similar strength as it couples to
nucleons (or even stronger, especially if the coupling to neutrons is suppressed), our results
suggest a revision of axion emissivity of dense stellar objects such as neutron stars, where
the cores might contain strange matter in large amounts, as have been proposed in the
literature (see the References given in the introduction).

In this study, we considered rather “traditional” models. Tree-level axion-quark in-
teractions, if any, are of the same order for all flavors, and there are no flavor-changing
processes. Our calculations, however, can in principle be extended to flavor non-conserving
processes by adjusting the matrix Xq accordingly and follow the strategy described in
eq. (2.11). This then would lead to new terms in the axion-baryon interaction Lagrangian
including baryon-changing processes.

The other modification of our calculations would be to consider models in which the
couplings of the axion to the charm, bottom, and top quark are much stronger than the
couplings to the up, down, and strange quarks. Such a model can easily lead to very strong
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axion-nucleon couplings driven by sea-quark effects (thus avoiding the problem of vanishing
axion-neutron coupling), which in the end are balanced by correspondingly larger values
of fa, as has bee shown recently in ref. [108]. Such ideas are entirely compatible with
our calculations: while the formulae derived in section 3 would be unaffected, the only
difference would be that the numerical calculations of section 4 have to be adjusted as the
terms ∝ ∆qi of (4.1) can not be neglected any more.

Our studies using both SU(2) and SU(3) symmetry have shown that the axion-baryon
couplings for rather standard axion models are now known to good precision, but also that
in the next-to-next-to-leading order case a higher precision is currently unattainable due to
the lack of knowledge of some LECs. In this study, we used a Monte Carlo sampling pro-
cedure to extrapolate the most probable values of these unknown LECs, where “probable”
here has to be understood in a Bayesian sense. It should thus be clear that our numerical
leading order results, eq. (4.6), are more solid than the numerical estimations of the NNLO
results.

Once the knowledge of the parameters in questions is enhanced, the numerical results
of this work can easily be updated. However, the current uncertainties of gaAB are not the
major concern considering the fact that the axion window in terms of fa is still very large.
The largest uncertainties regarding the existence of axions is hence strongly linked to the
uncertainty of fa and in the end it is not gaAB that counts, but GaAB = −gaAB/fa, see
eqs. (2.28) and (2.29). At last, we suggest that GaAB may be computed using lattice QCD
by introducing an external isoscalar axial source to mimic the axion.
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A SU(3) generators in the physical basis and structure constants

In the present work, we mainly make use of the physical basis [89], based on a set of
traceless, non-Hermitian matrices λ̃A, A = {1, . . . , 8}, such that the baryon octet matrix
B, eq. (2.15), and the pseudoscalar meson octet matrix Φ, eq. (2.19), can be decomposed as

B = 1√
2
∑
A

λ̃ABA ,

B̄ = 1√
2
∑
A

B̄Aλ̃
†
A ,

Φ =
∑
A

λ̃AΦA ,

(A.1)
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where the baryon fields BA and the meson fields ΦA can directly be equated with the
physical particles, i.e.

B1 = Σ+ , B2 = Σ− , B3 = Σ0 , B4 = p ,

B5 = Ξ− , B6 = n , B7 = Ξ0 , B8 = Λ , (A.2)

and

Φ1 = π+ , Φ2 = π− , Φ3 = π0 , Φ4 = K+ ,

Φ5 = K− , Φ6 = K0 , Φ7 = K̄0 , Φ8 = η . (A.3)

The explicit form of the generators λ̃A is

λ̃1 = λ̃†2 =

0
√

2 0
0 0 0
0 0 0

 , λ̃4 = λ̃†5 =

0 0
√

2
0 0 0
0 0 0

 , λ̃6 = λ̃†7 =

0 0 0
0 0
√

2
0 0 0

 ,

λ̃3 =


cos ε+ 1√

3 sin ε 0 0

0 − cos ε+ 1√
3 sin ε 0

0 0 − 2√
3 sin ε

 ,

λ̃8 =


− sin ε+ 1√

3 cos ε 0 0

0 sin ε+ 1√
3 cos ε 0

0 0 − 2√
3 cos ε

 ,

(A.4)

where ε is the mixing angle given in eq. (2.17). These matrices are related to the common
Gell-Mann matrices λa by a unitary 8× 8 transformation matrix N via

λ̃a =
∑
a

NAaλa , λa =
∑
A

N∗Aaλ̃A =
∑
A

NAaλ̃
†
A . (A.5)

The non-zero matrix elements of N are (note the sign convention that deviates from the
one in [89])

N11 = N44 = N66 = 1√
2
, N21 = N54 = N76 = 1√

2
,

N22 = N55 = N77 = − i√
2
, N12 = N45 = N67 = i√

2
, (A.6)

N33 = N88 = cos ε , N38 = −N83 = sin ε

and obey ∑
a

N∗AaNBa = δAB,
∑
A

N∗AaNAb = δab . (A.7)

As the Gell-Mann matrices, the λ̃A’s are ortho-normalized to a value of 2,〈
λ̃†Aλ̃B

〉
= 2δAB . (A.8)
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Moreover, they satisfy the commutator and anticommutator relations[
λ̃†A, λ̃B

]
=
∑
C

f̃ABC λ̃
†
C =

∑
C

f̃BAC λ̃C ,

[
λ̃A, λ̃B

]
=
∑
C

f̃CABλ̃C ,

[
λ̃†A, λ̃

†
B

]
=
∑
C

f̃CBAλ̃
†
C ,

{
λ̃†A, λ̃B

}
= 4

3δAB1 +
∑
C

d̃ABC λ̃
†
C = 4

3δAB1 +
∑
C

d̃BAC λ̃C ,

(A.9)

which gives the product rule

λ̃†Aλ̃B = 2
3δAB1 + 1

2
∑
C

(
d̃ABC + f̃ABC

)
λ̃†C

= 2
3δAB1 + 1

2
∑
C

(
d̃BAC + f̃BAC

)
λ̃C .

(A.10)

The structure constants defined in eq. (A.9) can be evaluated using

f̃ABC = 1
2
〈
λ̃†A

[
λ̃B, λ̃C

]〉
,

d̃ABC = 1
2
〈
λ̃†A

{
λ̃B, λ̃C

}〉
,

(A.11)

and are related to the corresponding structure constants of the Gell-Mann representa-
tion via

f̃ABC = 2i
∑
a,b,c

N∗AaNBbNCcf
abc ,

d̃ABC = 2
∑
a,b,c

N∗AaNBbNCcd
abc .

(A.12)

In contrast to the structure constants fabc (dabc) of the Gell-Mann representation, which are
totally anti-symmetric (symmetric), the structure constants f̃ABC (d̃ABC) of the physical
basis are anti-symmetric (symmetric) in the last two indices only. Finally, there are sum
rules for the structure constants:∑

C,D

f̃ACDf̃BCD =
∑
C,D

f̃CADf̃CBD = 12δAB ,

∑
C,D

d̃ACDd̃BCD =
∑
C,D

d̃CADd̃CBD = 20
3 δAB .

(A.13)

Often, we also need the generators at ε = 0, and therefore it is convenient to set

λ̂A = λ̃A
∣∣∣
ε=0

,

f̂ABC = f̃ABC
∣∣∣
ε=0

,

d̂ABC = d̃ABC
∣∣∣
ε=0

.

(A.14)
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The properties eqs. (A.8)–(A.13) are then of course also valid for the λ̂A’s with f̃ABC and
d̃ABC replaced by f̂ABC and d̂ABC , respectively. Note that now one has

λ̂3 = λ3 , λ̂8 = λ8 . (A.15)

The non-zero elements of the structure constants in this representation are
f̂147 = −f̂256 = f̂416 = −f̂527 = f̂624 = −f̂715 =

√
2 ,

f̂443 = −f̂553 = −f̂663 = f̂773 = −f̂345 = f̂367 = −1 ,
f̂448 = −f̂558 = f̂668 = −f̂778 = −f̂845 = −f̂867 = −

√
3 ,

f̂113 = −f̂223 = −f̂312 = −2 .

(A.16)

Similarly,
d̂147 = d̂256 = d̂416 = d̂527 = d̂624 = d̂715 =

√
2 ,

d̂443 = d̂553 = −d̂663 = −d̂773 = d̂345 = −d̂367 = 1 ,

d̂118 = d̂228 = d̂338 = d̂812 = d̂833 = −d̂888 = 2√
3
,

d̂448 = d̂558 = d̂668 = d̂778 = d̂845 = d̂867 = − 1√
3
.

(A.17)

B Matrix elements of gAB, d̂AB, and gloop
AB

Here we collect the matrix elements of the several contributions to the axion-baryon cou-
pling. Table 4 shows the matrix elements of gAB as defined in eq. (3.3) in the physical
basis at ε 6= 0, see eq. (2.17).

In eqs. (B.1)–(B.9), we list the non-zero matrix elements of the next-to-next-to-leading
order contributions to the axion-baryon coupling as defined in eqs. (3.23) and (3.24). Here
we refrain from explicitly marking the scale dependence of the LECs d(i)

k (λ).

d̂11 = c(3)
{

(4d41 + d47)
(

1− 1
z

)
+ 4d42

(
1 + 1

z

)
+ 2d45

(
1 + 1

z
+ 1
w

)}

+ c(8)
√

3

{
4d43

(
1− 1

z

)
+ 4d44

(
1 + 1

z

)
+ 2d46

(
1 + 1

z
+ 1
w

)

+ d47

(
1 + 1

z
− 2
w

)}

+ ci

{
di43

(
1− 1

z

)
+ di44

(
1 + 1

z

)
+ di46

(
1 + 1

z
+ 1
w

)}
,

(B.1)
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d̂22 = c(3)
{

(4d41 + d47)
(

1− 1
z

)
− 4d42

(
1 + 1

z

)
− 2d45

(
1 + 1

z
+ 1
w

)}

+ c(8)
√

3

{
−4d43

(
1− 1

z

)
+ 4d44

(
1 + 1

z

)
+ 2d46

(
1 + 1

z
+ 1
w

)

+ d47

(
1 + 1

z
− 2
w

)}

+ ci

{
−di43

(
1− 1

z

)
+ di44

(
1 + 1

z

)
+ di46

(
1 + 1

z
+ 1
w

)}
,

(B.2)

d̂33 = c(3) (4d44 + d47)
(

1− 1
z

)

+ c(8)
√

3

{
4d44

(
1 + 1

z

)
+ 2d46

(
1 + 1

z
+ 1
w

)
+ d47

(
1 + 1

z
− 2
w

)}

+ ci

{
di44

(
1 + 1

z

)
+ di46

(
1 + 1

z
+ 1
w

)}
,

(B.3)

d̂44 = c(3)
{

2 (d41 + d43)
(

1− 1
w

)
+ 2 (d42 + d44)

(
1 + 1

w

)

+ (d45 + d46)
(

1 + 1
z

+ 1
w

)
+ d47

(
1− 1

z

)}

+ c(8)
√

3

{
2 (3d41 − d43)

(
1− 1

w

)
+ 2 (3d42 − d44)

(
1 + 1

w

)

+ (3d45 − d46)
(

1 + 1
z

+ 1
w

)
+ d47

(
1 + 1

z
− 2
w

)}

+ ci

{
di43

(
1− 1

w

)
+ di44

(
1 + 1

w

)
+ di46

(
1 + 1

z
+ 1
w

)}
,

(B.4)

d̂55 = c(3)
{

2 (d41 − d43)
(

1− 1
w

)
− 2 (d42 − d44)

(
1 + 1

w

)

− (d45 − d46)
(

1 + 1
z

+ 1
w

)
+ d47

(
1− 1

z

)}

+ c(8)
√

3

{
2 (3d41 + d43)

(
1− 1

w

)
− 2 (3d42 + d44)

(
1 + 1

w

)

− (3d45 + d46)
(

1 + 1
z

+ 1
w

)
+ d47

(
1 + 1

z
− 2
w

)}

+ ci

{
−di43

(
1− 1

w

)
+ di44

(
1 + 1

w

)
+ di46

(
1 + 1

z
+ 1
w

)}
,

(B.5)
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Process A = B gAB

Σ+ → Σ+ + a 1 2
(
c(8)
√

3D + c(3)F
)

+ ciD
i

Σ− → Σ− + a 2 2
(
c(8)
√

3D − c
(3)F

)
+ ciD

i

Σ0 → Σ0 + a 3 2√
3

(
c(3) sin 2ε+ c(8) cos 2ε

)
D + ciD

i

p→ p+ a 4 c(3)(D + F )− c(8)
√

3 (D − 3F ) + ciD
i

Ξ− → Ξ− + a 5 c(3)(D − F )− c(8)
√

3 (D + 3F ) + ciD
i

n→ n+ a 6 −c(3)(D + F )− c(8)
√

3 (D − 3F ) + ciD
i

Ξ0 → Ξ0 + a 7 −c(3)(D − F )− c(8)
√

3 (D + 3F ) + ciD
i

Λ→ Λ + a 8 − 2√
3

(
c(3) sin 2ε+ c(8) cos 2ε

)
D + ciD

i

Process A 6= B gAB

Σ0 → Λ + a A = 8, B = 3 2√
3

(
c(3) cos 2ε+ c(8) sin 2ε

)
D

Λ→ Σ0 + a A = 3, B = 8

Table 4. Non-zero matrix elements of gAB , eq. (3.3).

d̂66 = c(3)
{
−2 (d41 + d43)

(1
z
− 1
w

)
− 2 (d42 + d44)

(1
z

+ 1
w

)

− (d45 + d46)
(

1 + 1
z

+ 1
w

)
+ d47

(
1− 1

z

)}

+ c(8)
√

3

{
2 (3d41 − d43)

(1
z
− 1
w

)
+ 2 (3d42 − d44)

(1
z

+ 1
w

)

+ (3d45 − d46)
(

1 + 1
z

+ 1
w

)
+ d47

(
1 + 1

z
− 2
w

)}

+ ci

{
di43

(1
z
− 1
w

)
+ di44

(1
z

+ 1
w

)
+ di46

(
1 + 1

z
+ 1
w

)}
,

(B.6)

d̂77 = c(3)
{
−2 (d41 − d43)

(1
z
− 1
w

)
+ 2 (d42 − d44)

(1
z

+ 1
w

)

+ (d45 − d46)
(

1 + 1
z

+ 1
w

)
+ d47

(
1− 1

z

)}

+ c(8)
√

3

{
−2 (3d41 + d43)

(1
z
− 1
w

)
− 2 (3d42 + d44)

(1
z

+ 1
w

)

− (3d45 + d46)
(

1 + 1
z

+ 1
w

)
+ d47

(
1 + 1

z
− 2
w

)}

+ ci

{
−di43

(1
z
− 1
w

)
+ di44

(1
z

+ 1
w

)
+ di46

(
1 + 1

z
+ 1
w

)}
,

(B.7)
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d̂88 = c(3)
(4

3d44 + d47

)(
1− 1

z

)

+ c(8)
√

3

{4
3d44

(
1 + 1

z
− 8
w

)
− 2d46

(
1 + 1

z
+ 1
w

)
+ d47

(
1 + 1

z
− 2
w

)}

+ ci

{1
3d

i
44

(
1 + 1

z
+ 4
w

)
+ di46

(
1 + 1

z
+ 1
w

)}
.

(B.8)

For the only non-diagonal matrix elements, one has d̂38 = d̂83, which is given by

d̂38 = c(3)
√

3

{
4d44

(
1 + 1

z

)
+ d46

(
1 + 1

z
+ 1
w

)}
+
(

4c(8)

3 d44 + ci√
3
di44

)(
1− 1

z

)
. (B.9)

Eqs. (B.10)–(B.18) show the matrix elements of the finite one meson loop contributions
gloop,rAB , cf. eq. (3.39), of diagram (a) (figure 1). The expressions have been simplified using
the leading order relations (2.21) and (2.22). Moreover, we have set µΦC = MΦC/(4πFp)
for any meson ΦC .

gloop,r11 = c(3)
{
−3D

(
3D2 − 11F 2

) (
µ2
K± − µ2

K0

)
− F

(
D2 − 9F 2

) (
4µ2

π± + µ2
K± + µ2

K0

)
− 24D2Fµ2

π±

}

+ c(8)
√

3

{
−D

(
D2 + 9F 2

) (
16µ2

π± + µ2
K± + µ2

K0

)
+ 54DF 2

(
4µ2

π± − µ2
K± − µ2

K0

)
− 3F

(
7D2 + 9F 2

) (
µ2
K± − µ2

K0

)}

+ ciD
i
{

30DF
(
µ2
K± − µ2

K0

)
+
(
D2 + 9F 2

) (
4µ2

π± + µ2
K± + µ2

K0

)
+ 12D2

(
µ2
K± + µ2

K0

)}
,

(B.10)

gloop,r22 = c(3)
{
−3D

(
3D2 − 11F 2

) (
µ2
K± − µ2

K0

)
+ F

(
D2 − 9F 2

) (
4µ2

π± + µ2
K± + µ2

K0

)
+ 24D2Fµ2

π±

}

+ c(8)
√

3

{
−D

(
D2 + 9F 2

) (
16µ2

π± + µ2
K± + µ2

K0

)
+ 54DF 2

(
4µ2

π± − µ2
K± − µ2

K0

)
+ 3F

(
7D2 + 9F 2

) (
µ2
K± − µ2

K0

)}

+ ciD
i
{
−30DF

(
µ2
K± − µ2

K0

)
+
(
D2 + 9F 2

) (
4µ2

π± + µ2
K± + µ2

K0

)
+ 12D2

(
µ2
K± + µ2

K0

)}
,

(B.11)
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gloop,r33 = c(3)D
(
17D2 − 9F 2

) (
µ2
K± − µ2

K0

)
+ c(8)
√

3

{
−D

(
D2 + 9F 2

) (
16µ2

π± + µ2
K± + µ2

K0

)
+ 54DF 2

(
4µ2

π± − µ2
K± − µ2

K0

)}

+ ciD
i
{(
D2 + 9F 2

) (
4µ2

π± + µ2
K± + µ2

K0

)
+ 12D2

(
µ2
K± + µ2

K0

)}
,

(B.12)

gloop,r44 = c(3)
{
−D

(
D2 + 3F 2

) (
5µ2

π± + 8µ2
K± − 4µ2

K0

)
+ 60DF 2

(
µ2
K± − µ2

K0

)
−D2F

(
11µ2

π± + 14µ2
K± − 10µ2

K0

)
− 9F 3

(
µ2
π± − 2µ2

K± − 2µ2
K0

)}

+ c(8)
√

3

{
−D3

(
13µ2

π± − 8µ2
K± − 14µ2

K0

)
+ 9DF 2

(
9µ2

π± − 4µ2
K± − 2µ2

K0

)
+ 3D2F

(
3µ2

π± − 14µ2
K± − 4µ2

K0

)
+ 27F 3

(
µ2
π± + 2µ2

K±

)}

+ ciD
i
{

30DF
(
µ2
π± − µ2

K0

)
+
(
D2 + 9F 2

) (
µ2
π± + 4µ2

K± + µ2
K0

)
+ 12D2

(
µ2
π± + µ2

K0

)}
,

(B.13)

gloop,r55 = c(3)
{
−D

(
D2 + 3F 2

) (
5µ2

π± + 8µ2
K± − 4µ2

K0

)
+ 60DF 2

(
µ2
K± − µ2

K0

)
+D2F

(
11µ2

π± + 14µ2
K± − 10µ2

K0

)
+ 9F 3

(
µ2
π± − 2µ2

K± − 2µ2
K0

)}

+ c(8)
√

3

{
−D3

(
13µ2

π± − 8µ2
K± − 14µ2

K0

)
+ 9DF 2

(
9µ2

π± − 4µ2
K± − 2µ2

K0

)
− 3D2F

(
3µ2

π± − 14µ2
K± − 4µ2

K0

)
− 27F 3

(
µ2
π± + 2µ2

K±

)}

+ ciD
i
{
−30DF

(
µ2
π± − µ2

K0

)
+
(
D2 + 9F 2

) (
µ2
π± + 4µ2

K± + µ2
K0

)
+ 12D2

(
µ2
π± + µ2

K0

)}
,

(B.14)
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gloop,r66 = c(3)
{
D
(
D2 + 3F 2

) (
5µ2

π± − 4µ2
K± + 8µ2

K0

)
+ 60DF 2

(
µ2
K± − µ2

K0

)
+D2F

(
11µ2

π± − 10µ2
K± + 14µ2

K0

)
+ 9F 3

(
µ2
π± − 2µ2

K± − 2µ2
K0

)}

+ c(8)
√

3

{
−D3

(
13µ2

π± − 14µ2
K± − 8µ2

K0

)
+ 9DF 2

(
9µ2

π± − 2µ2
K± − 4µ2

K0

)
+ 3D2F

(
3µ2

π± − 4µ2
K± − 14µ2

K0

)
+ 27F 3

(
µ2
π± + 2µ2

K0

)}

+ ciD
i
{

30DF
(
µ2
π± − µ2

K±

)
+
(
D2 + 9F 2

) (
µ2
π± + µ2

K± + 4µ2
K0

)
+ 12D2

(
µ2
π± + µ2

K±

)}
,

(B.15)

gloop,r77 = c(3)
{
D
(
D2 + 3F 2

) (
5µ2

π± − 4µ2
K± + 8µ2

K0

)
+ 60DF 2

(
µ2
K± − µ2

K0

)
−D2F

(
11µ2

π± − 10µ2
K± + 14µ2

K0

)
− 9F 3

(
µ2
π± − 2µ2

K± − 2µ2
K0

)}

+ c(8)
√

3

{
−D3

(
13µ2

π± − 14µ2
K± − 8µ2

K0

)
+ 9DF 2

(
9µ2

π± − 2µ2
K± − 4µ2

K0

)
− 3D2F

(
3µ2

π± − 4µ2
K± − 14µ2

K0

)
− 27F 3

(
µ2
π± + 2µ2

K0

)}

+ ciD
i
{
−30DF

(
µ2
π± − µ2

K±

)
+
(
D2 + 9F 2

) (
µ2
π± + µ2

K± + 4µ2
K0

)
+ 12D2

(
µ2
π± + µ2

K±

)}
,

(B.16)

gloop,r88 = − 5c(3)D
(
D2 − 9F 2

) (
µ2
K± − µ2

K0

)
+ c(8)
√

3

{
D
(
D2 + 27F 2

) (
µ2
K± + µ2

K0

)
+ 4D3

(
10µ2

π± − 3µ2
K± − 3µ2

K0

)}

+ ciD
i
{

3
(
D2 + 9F 2

) (
µ2
K± + µ2

K0

)
− 4D2

(
4µ2

π± + µ2
K± + µ2

K0

)}
.

(B.17)

The only non-diagonal matrix elements are given by

gloop,r38 = c(3)
√

3
D

{(
D2 − 9F 2

) (
8µ2

π± − µ2
K± − µ2

K0

)
+ 8D2

(
µ2
π± − 2µ2

K± − 2µ2
K0

)}
+
{
c(8)D

(
11D2 − 27F 2

)
− 3
√

3ciDi
(
D2 − 3F 2

)}(
µ2
K± − µ2

K0

)
(B.18)

and gloop,r83 = gloop,r38 .
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