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Abstract We discuss the formulation of a non-relativistic effective field theory for two-body P-wave scattering
in the presence of shallow states and critically address various approaches to renormalization proposed in the
literature. It is demonstrated that the consistent renormalization involving only a finite number of parameters
in the well-established formalism with auxiliary dimer fields corresponds to the inclusion of an infinite number
of counterterms in the formulation with contact interactions only. We also discuss the implications from the
Wilsonian renormalization group analysis of P-wave scattering.

1 Introduction

In the early 1990s, Weinberg has argued that nuclear forces and low-energy nuclear dynamics can be system-
atically analyzed using an effective chiral Lagrangian [1,2]. Today, 30 years after these seminal papers, chiral
effective field theory (EFT) has reached maturity to become a precision tool in the two-nucleon sector [3–8],
see Refs. [9–14] for review articles. In spite of this success, there is still no consensus on what concerns the
proper renormalization and power counting for few-body systems in chiral EFT. As any realistic quantum field
theory (QFT), chiral EFT requires regularization of ultraviolet (UV) divergences by means of some kind of a
regulator, say a cutoff. As the effective Lagrangian contains all terms allowed by the underlying symmetries,
it is, in principle, possible to completely absorb the regulator (cutoff) dependence of physical quantities in a
redefinition of parameters entering the effective Lagrangian, provided the applied regularization does not vio-
late the underlying symmetries. Since the effective Lagrangian contains an infinite number of terms, one needs
a systematic power counting scheme to classify various terms in the Lagrangian according to their importance
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and to set up an expansion of physical quantities in terms of the corresponding small parameter(s). A word of
caution is in order here. It is a common practice in QFTs to split the bare parameters and fields into renormal-
ized ones that give rise to the renormalized part of the Lagrangian and the corresponding counterterms. While
in renormalizable perturbative QFTs, all physical quantities are calculated within power-series expansions in
terms of renormalized coupling constants, in chiral EFT the expansion is performed in small momenta and
masses. This introduces an additional complication, since the relation between the expansion of the physical
quantities in terms of small parameters and the corresponding expansion of the effective Lagrangian reflects
the whole complexity of the QFT regularization and renormalization and becomes particularly nontrivial for
systems, whose description requires performing certain kinds of nonperturbative resummations. First, one
needs to specify whether the power counting for the effective Lagrangian is formulated in terms of bare or
renormalized parameters. While this issue is irrelevant in the purely mesonic sector of chiral EFT if one uses
dimensional regularization (DR), things start becoming more complicated already in the single-nucleon sector.
Using the heavy baryon approach [15,16] in combination with DR allows one to deal with this issue also for
this case. However, starting from the two-nucleon sector, it seems impossible to find a formulation that would
allow one making no distinction between the power counting being applied to the bare or the renormalized
parameters. In this context, it is important to keep in mind that the numerical values and, therefore, the relative
importance of bare parameters depend on the cutoff and are controlled by the Wilsonian renormalization group
(RG) equations [17], while the renormalized couplings depend on the renormalization scales as dictated by
the Gell-Mann and Low RG equations [18–20]. These two kinds of RG equations are similar in spirit but not
identical.

Our understanding of the chiral EFT approach for nuclear systems proposed by Weinberg in Refs. [1,2] is
that the power counting suggested in these works is supposed to be applied to the renormalized Lagrangian,
i.e., to the interaction terms with renormalized parameters. In Ref. [21], we have explicitly specified the
renormalization conditions corresponding to Weinberg’s power counting with all renormalized LECs scaling
according to naive dimensional analysis (NDA) for two-nucleon S-wave scattering in pionless EFT. We believe
that the frequently repeated claim of the inconsistency of Weinberg’s power counting, see, e.g., the recent
review article [14], stems from interpreting it as the power counting for the bare Lagrangian, see Ref. [21] for a
discussion. We emphasize, however, that the implementation of the scheme proposed in Ref. [21] in chiral EFT
with pions treated as dynamical degrees of freedom is plagued with severe technical issues, see, however, Ref.
[22] for recent analytic calculations in the chiral limit. Therefore, in practice, one usually utilizes a finite-cutoff
formulation of chiral EFT, where renormalization is carried out implicitly by expressing the bare parameters
in terms of observable quantities, see Refs. [11,23] for details.

An alternative approach to formulating a systematic power counting via self-consistent renormalization
conditions is provided by the Wilsonian RG method. Its application to the nucleon-nucleon (NN) scattering
problem in pionless EFT was pioneered in Ref. [24], followed by numerous works addressing various aspects
of this formalism. While the Wilsonian RG and the associated power counting for the nuclear forces have
been extensively discussed in the literature, see, e.g., Refs. [24–27], the term “RG invariance” is also being
used in a different setting as discussed e.g. in Refs. [14,28]. To distinguish this approach from the standard
Wilsonian RG analysis as applied in e.g. Refs. [24,26], we will refer to it as the large-cutoff RG-invariant
(lcRG-invariant) method throughout this paper. The Wilsonian RG analysis addresses the running of the bare
potential with the cutoff in the infrared region, aiming to identify a universal scaling behavior of perturbations
around fixed points of the RG equation. In contrast, the lcRG-invariant method of Refs. [14,28,29] attempts
to infer the implications of the required cutoff insensitivity of the scattering amplitude in the deep UV region
(i.e. for cutoff values much larger than the hard scales in the problem) for the EFT power counting.

In this paper we compare the standard approach to renormalization as it is understood in QFT (implemented
by counterterms or, equivalently, by subtracting the loop integrals), the Wilsonian RG method and the lcRG-
invariant approach for resonant P-wave systems in the framework of halo EFT [30]. The theoretical description
of such systems exhibits many of the features related to renormalization and power counting that have been
under debate during the past two decades. In particular, it also suffers from the issue discovered in Ref. [31],
where the S-wave potential with two contact interaction terms has been iterated in the Lippmann-Schwinger
(LS) equation for the NN scattering amplitude. The authors of that paper came to the conclusion, that the cutoff
cannot be taken beyond the hard scale of the problem unless the effective range is non-positive. The solution to
this problem from the EFT point of view suggested in Ref. [32] and reiterated in a new context in Ref. [33] is
often dismissed as irrelevant by practitioners of the lcRG-invariant approach, since the effective range in both
the 1S0 and 3S1 channels may be regarded as of natural size, so that no iterations of the subleading contact
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Fig. 1 The lowest-order amplitude for fine-tuned P-wave systems described in Eqs. (2), (4) in the EFT with (upper panel) and
without (lower panel) a dimer field

interaction are necessary [14], see, however, Ref. [34]. This argument does not hold for resonant P-wave
systems we are interested in here.

The purpose of this paper is twofold. First, it is to be viewed as a follow-up to a series of pedagogical papers
[21,33,35–38], where various conceptual issues in connection with the non-perturbative renormalization of the
LS equation in the EFT context are discussed on the example of S-waves. Secondly, we revisit the formalism
and some of the conclusions of Refs. [30,39–41], where halo EFT is applied to fine-tuned S- and P-wave
systems.

Our paper is organized as follows: in Sect. 2, we briefly review the formulations of halo EFT for S-
and P-wave systems proposed in the literature and summarize the findings to be critically examined in the
following sections. Next, in Sect. 3, we present the formulation of the EFT for P-wave halo systems without
auxiliary dimer fields using a subtractive renormalization scheme, while Sect. 4 addresses implications from
the Wilsonian RG analysis. The results of our study are summarized in Sect. 5.

2 Halo EFT with a Dimer Field Versus the lcRG-Invariant Approach

Consider two non-relativistic particles with interactions, whose (finite) range R is determined by some mass
scale Mhi ∼ 1/R.1 Near threshold, the on-shell scattering amplitude in the partial wave with orbital angular
momentum l can be parameterized in terms of the effective range expansion (ERE) [42]

T (k) ∝ 1

k cot δ − ik
� k2l
(−1/a + rk2/2 + v2k4 + · · · )− ik2l+1

, (1)

where k and δ denote the on-shell momentum and the phase shift, respectively. Throughout this paper, we
adopt the same naming for the coefficients in the ERE as used for the l = 0 case, i.e. a, r and vi refer to
the scattering length, effective range and the shape parameters, respectively. If the effective range function
k2l+1 cot δ does not feature poles in the near-threshold region, the coefficients in the ERE starting from r are
expected to scale with the corresponding powers of Mhi, i.e. r ∼ M2l−1

hi , v2 ∼ M2l−3
hi , while the scattering

length a can take any value depending on the strength of the interaction. In this paper, we consider the EFT for
P-wave scattering valid for momenta k ∼ Mlo � Mhi. We are particularly interested in fine-tuned systems, for
which the scattering amplitude in Eq. (1) features poles located within the validity range of the EFT. Assuming
that the first two terms in the ERE are fine-tuned according to

1/a ∼ M3
lo, r ∼ Mlo, vn ∼ M3−2n

hi , (2)

it follows that the two lowest-order contact interactions in the effective two-particle potential

V = C2 p′ p + C4 p′ p
(
p′2 + p2)+ · · · , (3)

where p ≡ | �p | and p′ ≡ | �p ′| refer to the initial and final momenta of the particles in the center-of-mass
system, need to be iterated in the LS equation to all orders [30], see the lower line in Fig. 1.

An alternative, less fine-tuned scenario with

1/a ∼ M2
loMhi, r ∼ Mhi, vn ∼ M3−2n

hi , (4)

1 Here and in what follows, we use natural units with h̄ = c = 1 unless specified otherwise.
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has been considered in Ref. [39]. The authors of both references employed the formulation of the EFT with an
auxiliary spin-1 dimer field following the approach developed originally in Ref. [43] for the case of NN S-wave
scattering, see the upper panel in Fig. 1. For applications of EFTs with auxiliary fields to nuclear systems see
e.g. Refs. [44–49]. Notice that the UV divergences in the dimeron self-energy at leading order are cancelled by
the counterterms generated by the bare particle-dimeron coupling constant g1 and the residual dimeron mass
�1, see Refs. [30,39] for details.

Recently, also highly fine tuned S-wave systems with shallow resonances have been analyzed in the EFTs
without [40] and with [41] an auxiliary dimer field assuming the scaling behavior a ∼ r ∼ 1/Mlo, vn ∼ M1−2n

hi ,
so that the first two terms in the ERE are of the same order as the unitarity term −ik. The required deviation
from NDA for the first two terms in the ERE represents a minimal condition needed to generate low-lying
resonance states in S-waves. For the formulation without auxiliary fields, the authors of Ref. [40] considered
energy-independent contact interactions using the lcRG-invariant approach. That is, the expression for the
on-shell amplitude resulting from the iteration of the potential C0 +C2(p′2 + p2) in the cutoff-regularized LS
equation is matched to the first two terms in the ERE for arbitrarily large values of the UV cutoff �. In fact,
exactly the same approach was used a long time ago by Beane et al. [31] to describe NN scattering. As already
pointed out in the introduction, taking � 	 Mhi leads to complex values for the bare LECs C0(�), C2(�)
unless the effective range is negative. This observation is a manifestation of the well known Wigner bound
[50], a constraint on the effective range placed by the range of the interaction R, r ≤ 2R[1 + O(R/a)], that
relies on causality and unitarity. For a generalization of the Wigner bound to higher partial waves and arbitrary
dimensions, see Ref. [51]. So, how can then the positive experimental values for the effective range in the
neutron-proton 1S0 and 3S1 channels, namely r = 2.75(5) fm and r = 1.759(5) fm [52], be reconciled with
the EFT? As pointed out in Refs. [32,33] and will be demonstrated in the next section for the case of P-wave
scattering, the constraint on the value of r in the lcRG-invariant formulation of the EFT is an artifact of the
amplitude being only partially renormalized prior to taking the � → ∞ limit. The issue with the Wigner bound
becomes irrelevant once the amplitude is properly renormalized using e.g. a subtractive scheme regardless of
whether the C2-term is treated in perturbation theory or non-perturbatively. It also does not pose a problem in
both pionless and chiral EFTs for NN scattering if the UV cutoff is kept of the order of the corresponding hard
scale as done e.g. in Refs. [3–5]. Furthermore, if one assumes r ∼ 1/Mπ for both S-wave NN channels, the
range corrections can be taken into account perturbatively in pionless EFT with no restrictions on the value of
r , regardless of the employed cutoff value.

On the other hand, the issue with the Wigner bound cannot be avoided in the lcRG-invariant EFT for
shallow S-wave resonances. The authors of Ref. [40] therefore conclude that renormalization at leading order
forces the effective range to be negative. Since a negative effective range admits only at most one solution of
the equation −1/a+rk2/2− ik = 0 in the upper half of the complex momentum plane, no unphysical poles in
the amplitude corresponding to Re k 
= 0, Im k > 0 can appear. The authors thus come to the conclusion that
renormalization automatically incorporates the causality constraint that a resonance represents decaying, not
growing, states [40].

Following the approach of Ref. [40], we now apply the lcRG-invariant EFT formulation without dimer
fields to the case of resonant P-wave scattering. To this aim, we solve the LS equation for the off-shell P-wave
amplitude

T (p′, p, k) = V (p′, p) + m

�∫

0

l2dl

2π2

V (p′, l) T (l, p, k)

k2 − l2 + i ε
, (5)

where the bare potential is given in Eq. (3), and we have introduced a sharp cutoff to render the appearing
integrals UV-convergent,

Jn(k) =
�∫

0

l2dl

2π2

m ln−1

k2 − l2 + iε
= In + k2 In−2 + · · · + kn−3 I3 + kn−1 I (k), n = 3, 5, . . . , (6)

where the subscript n denotes the degree of divergence and the integrals In and I (k) are defined via
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In = −m

�∫

0

l2dl

2π2 ln−3 = −m�n

2nπ2 , n = 1, 3, 5, . . . ,

I (k) =
�∫

0

l2dl

2π2

m

k2 − l2 + iε
= I1 − i

mk

4π
− mk

4π2 ln
� − k

� + k
. (7)

We then obtain for the on-shell amplitude T (k) ≡ T (k, k, k):

k2

T (k)
= −I (k) k2 − I3 + (C4 I5 − 1) 2

C4
(
k2 (2 − C4 I5) + C4 I7

)+ C2
. (8)

Notice that for the sake of compactness, we have suppressed the dependence of the integrals I (k), In and
the bare LECsC2,C4 on the cutoff �. To perform (implicit) renormalization, we express the bare LECsC2(�),
C4(�) in terms of the scattering length and effective range by expanding Eq. (8) in powers of k2 and matching
the first two coefficients to the inverse of Eq. (1). Following the lcRG-invariant scheme, we take the � → ∞
limit to arrive at the cutoff-independent expression for the scattering amplitude

T (k) = −4π

m

k2

− 1
a + r

2k
2 − ik3

. (9)

While this result looks satisfactory, the expressions for the bare LECs C2, C4 in terms of the scattering
length and effective range have the form2

m

10π2C2(�) = 64a2�6 + 10
√

5α
(
3π − 2a�3

)+ 3πa�3
(
15a�2r + 158

)− 450π2

7�3
(
16a2�6 + 3πa�3

(
3a�2r + 20

)− 45π2
) ,

m

10π2C4(�) =
√

5

α

(
3π − 2a�3

)

�5
− 1

�5
, (10)

where we have introduced α = −16a2�6 −3πa�3
(
3a�2r + 20

)+45π2. Thus, both bare coupling constants
become complex for sufficiently large values of the cutoff �. This observation is in line with the causality
bound r ≤ −2/R (1 + O(R3/a)) obtained in Ref. [51] if the range of the interaction R is identified with
1/�. Taking the renormalizability requirement of the lcRG-invariant approach seriously as done, e.g., in Refs.
[14,40], one is forced to conclude that resonant P-wave systems specified by Eqs. (2), (4) cannot be described
in an EFT without an auxiliary dimer field. As we will show in the next section, the problem actually lies in
the procedure of the lcRG-invariant approach rather than in the EFT itself.

As already mentioned in the introduction, resonant P-wave systems have also been examined in the EFT
with auxiliary dimer fields [30,39,44,45], see Ref. [53] for a review article. The EFT formulation employed
in these studies may, however, admit unphysical solutions. For example, one may encounter shallow poles in
the upper half plane [40]. The possible appearance of unphysical solutions makes the mismatch between the
lcRG-invariant and the dimer-field EFT formulations less evident. It is, however, easy to construct a simple
example that leads to shallow P-wave states in agreement with the assignment of Eq. (4) and is compatible with
causality and unitarity. For this, we simply take the solution for the amplitude obtained in the lcRG-invariant
approach but keep the cutoff � finite of the order of � ∼ Mhi, as advocated in Refs. [11,21,23,33,35].
Substituting the values of C2(�) and C4(�) from Eq. (10) into Eq. (8), the effective range function is found
to be

k3 cot δ = −1

a
+ 1

2
rk2 − k4

2π

(
3(4� + πr)2

6πa−1 − 4�3 + 3k2(4� + πr)
+ 2

k
ln

� − k

� + k

)
. (11)

For � ∼ Mhi, the cutoff dependent coefficients in the ERE terms ∼ k2n , n = 2, 3, . . ., are beyond the
accuracy of the LO approximation for the assumed power counting scenario. The condition C2,4(�) ∈ R

translates into the following restriction on the effective range

r ≤ 5π

a2�5
− 20

3a�2 − 16�

9π
� −16�

9π
, (12)

2 The matching equations also admit another solution with the “−” sign in front of the square roots. This solution is, however,
incompatible with the loop expansion of the amplitude and, therefore, has to be discarded as unphysical.
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where the second inequality is valid for the assumed enhanced values of the scattering length. Thus, the
considered example is compatible with the scenario suggested in Eq. (4) and describes a P-wave system that
exhibits a deeply bound state outside of the EFT validity range and either a shallow narrow resonance for a < 0
or a combination of shallow bound and virtual states for a > 0, see Refs. [30,47,53] for a related discussion.
This situation cannot be accommodated by the lcRG-invariant approach.

3 Subtractively Renormalized Halo EFT for P-Wave Scattering

3.1 Subtractive Renormalization of the Scattering Amplitude

We now renormalize the amplitude in Eq. (8) following the standard procedure in QFT (and EFT) by subtracting
all UV divergences prior to removing the regulator by taking the limit � → ∞. For the case at hand, this
corresponds to taking into account contributions of an infinite number of counterterms, see Refs. [21,32,38,54–
56] for a related discussion. Specifically, we first separate out power-like UV divergences in the appearing
integrals in the most general way via

In = −m

μn∫

0

l2dl

2π2 l
n−3 − m

�∫

μn

l2dl

2π2 l
n−3 ≡ I Rn (μn) + �n(μn), with n = 1, 3, 5, . . . ,

I (k) ≡ I R(k, μ1) − �1(μ1), (13)

where μn denotes the corresponding subtraction scales. We then renormalize the scattering amplitude in Eq. (8)
by simultaneously replacing the integrals In and I (k) with I Rn (μn) and I R(k, μ1) and the bare coupling
constants C2 and C4 with the corresponding μn-dependent renormalized couplings CR

2 and CR
4 , respectively.

As will be shown below, by doing so we implicitly take into account the contributions of an infinite number
of counterterms. Since the renormalized amplitude depends only on UV-convergent integrals, we can now
safely take the limit � → ∞. Fixing the renormalized LECs by the requirement to reproduce the scattering
length and effective range leads to our final result for the subtractively renormalized effective range function
expressed in terms of physical parameters:

k3 cot δ = −1

a
+ 1

2
rk2 − k4

2π

3 (4μ1 + πr) 2

6πa−1 − 4μ3
3 + 3k2(4μ1 + πr)

. (14)

It is instructive to discuss some of the qualitative features of the obtained result. We first observe that the
renormalized scattering amplitude depends on the subtraction scales μ1 and μ3. This can be traced back to
non-renormalizability of the potential in Eq. (3), which reflects the fact that not all UV divergences generated
by the loop expansion of the amplitude are cancelled by counterterms stemming from C2 and C4. As already
mentioned above, our renormalization procedure is, in fact, equivalent to taking into account an infinite number
of scale-dependent counterterms, while utilizing a specific (fixed) choice for the corresponding scale-dependent
renormalized LECs. To elaborate on this point, consider an EFT formulation that allows for energy-dependent
contact interactions. In such a case, one can easily obtain the expression for the bare potential corresponding
to the renormalized one CR

2 p′ p +CR
4 p′ p(p′2 + p2), which incorporates all counterterms, in a closed form3:

V = CR
2 pp′ + CR

4 pp′ (p2 + p′2)+ counterterms

= pp′C
R
2 + CR

4

(
p2 + p′2)− h̄(CR

4 )2 p2 p′2 (J3 − J R
3

)− h̄(CR
4 )2

[
J7 − J R

7 − (
J5 − J R

5

) (
p2 + p′2)]

1 + h̄C R
2

(
J3 − J R

3

)+ 2h̄C R
4

(
J5 − J R

5

)+ h̄2(CR
4 )2

[ (
J5 − J R

5

)2 − (
J3 − J R

3

) (
J7 − J R

7

) ]

= pp′ N
D

, (15)

where

3 To do so, one can start from a separable potential of the form V = p′ p f1(k) + pp′(p′2 + p2) f2(k) + p′3 p3 f3(k) and
determine the functions fi (k) from matching the off-shell T -matrix, obtained by solving the cutoff-regularized LS equation, to
the subtractively renormalized off-shell T -matrix.



Effective Field Theory for Shallow P-Wave States Page 7 of 25 51

N = 42CR
2 + CR

4

(
42
(
p2 + p′2)+ h̄C̃ R

4

{
70
(
k2 − p2) (k2 − p′2) [3k2(� − μ1) + �3 − 2μ3

3

]

+30
(
�7 − μ7

7

)+ 42
(
�5 − μ5

5

) (
k2 − p2 − p′2)

})
,

D = 42 − 14h̄C̃ R
4

[
5k2 (�3 − μ3

3

)+ 15k4 (� − μ1) + 3
(
�5 − μ5

5

)] [
2 − h̄C̃ R

4

(
�5 − μ5

5

)]

−10
[
3k2 (� − μ1) + �3 − μ3

3

] [
7h̄C̃ R

2 + 5(h̄C̃ R
4 )2 (�7 − μ7

7

)]
. (16)

In the above expressions, Jn ≡ Jn(k) are the cutoff-regularized integrals defined in Eqs. (6), (7), while J R
n ≡

J R
n (k, μi ) refer to the corresponding cutoff-dependent but UV-convergent renormalized integrals, obtained by

replacing In in Eq. (6) with I Rn (μn) defined in Eq. (13). Furthermore, we have introduced C̃ R
n ≡ mCR

n /(10π2)
to simplify the notation and retained the factors of h̄ to facilitate the interpretation of our results in terms of the
loop expansion. The dependence of the bare potential in Eq. (15) on the combinations of the integrals Jn − J R

n
only is consistent with the employed renormalization procedure. Solving the cutoff-regularized LS equation
with the potential in Eq. (15), one can verify that the resulting scattering amplitude T (p′, p, k) matches exactly
the subtractively renormalized one, with lim�→∞ Re{−4πk2/[mT (k)]} coinciding with Eq. (14).

After these preparations, it is easy to explicitly verify the equivalence of the employed renormalization
procedure and the standard QFT/EFT renormalization technique based on splitting the bare coupling constants
into the renormalized ones and counterterms. That is, we start with the potential written in terms of bare LECs,
which involves an infinite number of contact interactions (some of which are redundant)

V = p′ p
(
C2 + C2

2k
2 + C4

2k
4 + · · · )+ p′ p(p′2 + p2)

(
C4 + C2

4k
2 + C4

4k
4 + · · · )

+p′3 p3 (C6 + C2
6k

2 + C4
6k

4 + · · · )+ · · · , (17)

where the ellipses refer to terms with higher powers of p, p′ and k. The subscripts (superscripts) of the LECs
accompanying various terms denote the powers of the off-shell momenta p′, p (on-shell momentum k). For
resonant P-wave systems described by Eqs. (2), (4), the LO scattering amplitude is obtained by resumming
the CR

2 - and the CR
4 -contributions as explained below,4 while insertions of the interactions with higher powers

of momenta or energy are suppressed by powers of Mlo/Mhi for an appropriate choice of renormalization
conditions to be specified below. Therefore, we set the renormalized LECs accompanying higher-order terms
in the potential to zero as appropriate at LO:

CR
l (μi ) = Cm,R

n (μi ) = 0 for ∀n,m and l ≥ 6. (18)

The scattering amplitude can be calculated from iterations of the cutoff-regularized LS equation with the
potential in Eq. (17) at any loop order. Renormalization is accomplished in the usual way by splitting the
unobservable bare LECs into the renormalized ones and (scheme-dependent) counterterms, which depend on
the renormalized LECs. For all renormalized LECs being set to zero except for CR

2 and CR
4 , this splitting has

the form

C2(�) = CR
2 (μi ) +

∞∑

L=1

h̄L�
(L)
C2

(�, μi ),

C4(�) = CR
4 (μi ) +

∞∑

L=1

h̄L�
(L)
C4

(�, μi ),

C6(�) =
∞∑

L=1

h̄L�
(L)
C6

(�, μi ),

Cm
n (�) =

∞∑

L=1

h̄L�
(L)
Cm
n
(�, μi ), (19)

4 Alternatively and equivalently, one can use the C2
2 -vertex instead of the C4-one or their linear combination.
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while C≥8(�) = Cm≥8(�) = 0. The explicit expressions for the counterterms on the right-hand sides of the
above equations can be read off from Eqs. (15), (16). For example, for the counterterms in the first line of
Eq. (19), one has

∞∑

L=1

h̄L�
(L)
C2

= h̄
21CR

2 C̃ R
4

(
�5 − μ5

5

) [
2 − h̄C̃ R

4

(
�5 − μ5

5

)]+ 15CR
4 C̃ R

4

(
�7 − μ7

7

)+ 5CR
2

(
�3 − μ3

3

) [
5h̄(C̃ R

4 )2
(
�7 − μ7

7

)+ 7C̃ R
2

]

21 − 21h̄C̃ R
4

(
�5 − μ5

5

) [
2 − h̄C̃ R

4

(
�5 − μ5

5

)]− 5h̄
(
�3 − μ3

3

) [
5h̄(C̃ R

4 )2
(
�7 − μ7

7

)+ 7C̃ R
2

] ,

(20)

where we have suppressed the subtraction-scale dependence of the renormalized LECs CR
2 and CR

4 . Being
expressed in terms of the renormalized LECs as described above, the scattering amplitude at any loop order
h̄L involves only UV-convergent integrals, so that one can safely take the limit � → ∞. The LO amplitude is
obtained by resumming the finite contributions to all loop orders. Setting p′ = p = k and fixing CR

2 and CR
4

from matching the first two terms in the ERE leads to the expression given in Eq. (14). The above considerations
make it clear that the residual dependence of the amplitude on the scales μ1, μ3 is induced by our choice for the
renormalized coupling constants of higher-order contact interactions in Eq. (18). Notice further that contrary
to what is claimed in Refs. [30,40,41], renormalization by itself imposes no constraints on the values of the
coefficients in the ERE.

3.2 EFT for Doubly Fine-Tuned P-Wave Systems

So far, we have left open the question of the choice of the subtraction scales μi , which plays a key role in setting
up a self-consistent power counting. For fine-tuned S-wave systems near the unitary limit with a ∼ 1/Mlo,
it is possible to choose all subtraction scales of the order of the soft scale, i.e. μi ∼ Mlo. This leads to
manifest power counting for loop diagrams, commonly referred to as the KSW scheme [57]. For this choice
of the renormalization conditions, the LEC accompanying the LO (i.e., derivative-less) contact interaction is
enhanced compared to NDA,CR

0 ∼ M−1
lo , and the LO amplitude ∼ M−1

lo is generated by resumming all possible
bubble diagrams constructed from the CR

0 -vertices, which all scale as ∼ M−1
lo . Higher-order corrections to

the amplitude are enhanced by ∼ M−2
lo relative to NDA and can be taken into account perturbatively. They

stem from dressed higher-order contact interactions accompanied with enhanced LECs. Notice that while the
renormalization conditions μi ∼ Mlo seem to permit choosing μi = 0, which would be the case if one would
use dimensional regularization (DR) in combination with the minimal subtraction (MS) or modified minimal
subtraction scheme (MS), setting μ1 = 0 results in the EFT expansion that has zero radius of convergence
for a → ∞ [31,58]. The issue can be avoided using a subtractive renormalization scheme [32] or DR in
combination with the power divergence subtraction (PDS) scheme to explicitly account for linear divergences
by subtracting poles in d = 3 space-time dimensions [57]. Alternatively to the KSW approach, a self-consistent
power counting scheme for S-wave systems with a large scattering length is obtained by setting μ1 ∼ Mhi
while keeping μ3 ∼ μ5 ∼ · · · ∼ Mlo [21]. This choice of the renormalization conditions leads to Weinberg’s
power counting with all LECs scaling according to NDA. All bubble diagrams constructed from the LO contact
interactions scale individually as O(1), but their resummed contribution is enhanced by M−1

lo as a result of
fine-tuning the LEC CR

0 . Higher-order corrections are again generated perturbatively from dressed contact
interactions with increasing number of derivatives.

For the case of resonant P-wave scattering we are interested in here, one may expect the choice of renormal-
ization conditions to be even more delicate due to the even stronger amount of fine tuning. Indeed, a closer look
at Eq. (14) reveals that one must choose μ3 ∼ Mhi since setting μ3 ∼ Mlo would lead to poles in the effective
range function5 located at k ∼ Mlo, thereby resulting in enhanced values of the coefficients in the ERE in
contradiction with the assumed scenarios in Eqs. (2), (4). Consequently, no KSW-like scheme is possible for
resonant P-wave systems under consideration.6 A self-consistent Weinberg-like scheme with manifest power

5 Such poles correspond to the phase shift crossing zero and do not contradict any fundamental principle. They do, however,
restrict the range of convergence of the ERE.

6 In fact, the same issue appears in fine-tuned S-wave systems as well, if the effective range term is treated non-perturbatively
[34].
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T (−1) ≡ = + + + + …

with = + + + …

T (0) = +

T (1) = +++ +

Fig. 2 The leading, subleading and sub-subleading contributions to the P-wave scattering amplitude for the scenario of Eq. (2).
Solid dots, rectangles and diamonds refer to the C2-, C4- and C6-vertices, respectively. Open rectangles and open diamonds
denote corrections to the C4- and C6-vertices proportional to δC (3)

4 and δC (1)
6 as explained in the text. For all diagrams, the

two-particle Green’s functions refer to the usual nonrelativistic free resolvent operator as appears in Eq. (5)

counting for renormalized loop diagrams and all LECs CR
n , Cm,R

n scaling according to NDA emerges if we set
μ5 ∼ μ7 ∼ μ9 ∼ · · · ∼ Mlo. The remaining scale μ1 can be chosen either as μ1 ∼ Mhi or μ1 ∼ Mlo as will
be discussed below.

It is instructive to see how the P-wave scattering amplitude is obtained in terms of diagrams for both
scenarios specified in Eqs. (2) and (4). Here and in what follows, we set the renormalization conditions as

μ1 ∼ μ3 ∼ Mhi, μ5 = μ7 = · · · = 0. (21)

Notice that setting the scales μ≥5 = 0 is not necessary and done solely to keep the resulting expressions
simple. The low-energy expansion for the scattering amplitude for the doubly fine-tuned scenario of Eq. (2) is
visualized in Fig. 2. For the employed renormalization conditions, a two-particle scattering diagram made out
of Vi vertices of type i with all LECs scaling according to NDA starts contributing to the amplitude at order
∼ Mn

lo with

n = 2 +
∑

i

Vi (di − 2), (22)

where di is the power of momenta for a vertex of type i . Consequently, all diagrams constructed solely from
the lowest-order vertices ∝ C2 and shown in the second line of Fig. 2 contribute at the same order n = 2 and,
therefore, must be resummed. Their resummed off-shell contribution TC2(p

′, p, k) has the form

TC2(p
′, p, k) = 12π2CR

2 p′ p
12π2 + mCR

2 (3iπk3 + 6μ1k2 + 2μ3
3)

. (23)

Since no other diagram can contribute to the scattering length (for the employed renormalization con-
ditions), the exact value of the LEC CR

2 can be determined from matching TC2(k, k, k) to
[
T (k)/k2

]
k=0 =

4πa/m, yielding

CR
2 (μ3) = 12π2

m(3πa−1 − 2μ3
3)

. (24)

WhileCR
2 is of natural size, its value had to be fine-tuned to reproduce a−1 ∼ M3

lo, leading to the amplitude

TC2(p
′, p, k) = −4π

m

p′ p
− 1

a − 2μ1
π

k2 − ik3
∼ O(1), (25)

which is enhanced by two inverse powers of the soft scale relative to the expectation based on NDA. As a
consequence, all diagrams made out of m subleading vertices ∝ C4 and m + 1 insertions of TC2 , see the first
line of Fig. 2, are enhanced and appear at the same order ∼ O(1). Their resummed contribution defines the
LO amplitude T (−1)(p′, p, k) ∼ O(M−1

lo ), which is additionally enhanced by one inverse power of Mlo as a
result of the fine tuning of the value of CR

4 ,

CR
4 (μ1, μ3) = 9π2(πr + 4μ1)

4mμ6
3

, (26)
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needed to reproduce the effective range r ∼ Mlo. Notice that similarly to CR
2 (μ3), CR

4 (μ1, μ3) ∼ O(1) is also
consistent with NDA. The resulting LO amplitude reads

T (−1)(p′, p, k) = −4π

m

p′ p
− 1

a + 1
2rk

2 − ik3 + 3μ1(πr+4μ1)

πμ3
3

k4 + i 3(πr+4μ1)

2μ3
3

k5 + O(k6)

= −4π

m

p′ p
− 1

a + 1
2rk

2 − ik3
+ O(1). (27)

We emphasize that the obtained LO amplitude is, by construction, RG invariant at the considered level of
accuracy since scale-dependent terms appear at order O(1).

Corrections to the LO amplitude emerge from diagrams involving insertions of vertices with a larger
number of derivatives. As already pointed out above, the choice of higher-order operators is not unique. In
particular, one can use any of the order-M6

lo operators p′3 p3, p′ p(p′4 + p4), p′ pk4 or p′ p(p′2 + p2)k2 as
they are all equivalent on-shell. In addition to vertices involving higher powers of momenta, one has to take
into account interactions emerging from higher-order corrections to the renormalized LECs. For example, the
expression for CR

4 in Eq. (26) is only correct up to terms of order ∼ M2
lo, and one still needs to include the

contributions from order-Mm
lo corrections δC (m)

4 with m = 3, 4, 5, . . .. Alternatively and equivalently (up to
higher-order terms), one can account for such corrections without introducing new vertices by re-adjusting the
LECs CR

n at orders beyond the one they start contributing to the amplitude.
For the employed renormalization conditions, a diagram made out of Vi vertices of type i and order di ≥ 4

with N insertions of the LO amplitude in Eq. (27) contributes at order Mn
lo with

n = 2 − 3N +
∑

i

Vi (di − 2) ≥
{−1 +∑

i Vi (di − 5)
0 , (28)

where the upper inequality results from the condition N ≤ ∑
i Vi + 1. As for the lower inequality, we made

use of the fact that diagrams made out of m C4-vertices and m + 1 insertions of T (−1) are already included
at LO. Thus, higher-order corrections ∝ C4 emerge from diagrams with at least two C4-vertices separated by
the free Green’s function, which start contributing at order ∼ M0

lo. This shows that all contributions to the
amplitude beyond LO are perturbative.

In Fig. 2, we show the contributions to the amplitude at next-to-leading order (NLO) and next-to-next-
to-leading order (NNLO). Evaluating the two order-M0

lo diagrams, where we have chosen to work with the
operator C6 p′3 p3, we obtain the following contribution to the inverse T -matrix:

4πk2

m

T (0)(k)
[
T (−1)(k)

]2 =
[

−3(πr + 4μ1)
2

8πμ3
3

+ mCR
6 μ6

3

9π3

]

k4 + O(k6). (29)

Matching this expression to the first shape term in the ERE leads to7

CR
6 (μ1, μ3) = 9π2[−48μ2

1 + π(3πr2 + 8v2μ
3
3)]

8mμ9
3

∼ O(1). (30)

Similarly, for the NNLO contribution, we find

− 4πk2

m

{

− T (1)(k)
[
T (−1)(k)

]2 +
[
T (0)(k)

]2
[
T (−1)(k)

]3

}

=
[

2δC (3)
4 μ6

3m

9π3 − 3 (4μ1 + πr)

2aμ3
3

]

k2

7 Here and in what follows, we made a choice to also keep higher-order contributions to various LECs as is a matter of
convention.
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T (0) ≡ = + + + + …

T (2) = + +++

Fig. 3 Diagrams contributing to the P-wave scattering amplitude up to order M2
lo for the scenario of Eq. (4). Open rectangle

denotes a correction to the C4-vertex proportional to δC (2)
4 as explained in the text. For further notation, see Fig. 2

+
[

−9μ1 (4μ1 + πr)

2aμ6
3

+ δC (1)
6 μ6

3m

9π3 + 4δC (3)
4 μ1μ

3
3m

3π3 + 3r (4μ1 + πr)

4μ3
3

]

k4

− i

12μ6
3

[
27π (4μ1 + πr)

a
− 8δC (3)

4 μ9
3m

π2 + 18μ3
3 (4μ1 + πr)

]

k5 + O(k6). (31)

Matching this expression to the ERE leads to

δC (3)
4 (μ1, μ3) = 27π3(πr + 4μ1)

4amμ9
3

,

δC (1)
6 (μ1, μ3) = −27π3(πr + 4μ1)(6μ1 + arμ3

3)

4amμ12
3

. (32)

Substituting these values back into the expression for the amplitude, the NNLO result finally takes the
form

−4πk2

m

{
1

T (−1)(k)
− T (0)(k)
[
T (−1)(k)

]2 − T (1)(k)
[
T (−1)(k)

]2 +
[
T (0)(k)

]2
[
T (−1)(k)

]3

}

= −1

a
+ 1

2
rk2 − ik3 + v2k

4 + i
9π(πr + 4μ1)

4aμ6
3

k5

+O(k6). (33)

Notice that the last term in the second line of this equation violates unitarity but is of order ∼ M8
lo, which is

beyond the accuracy of the NNLO approximation. Higher-order corrections to the amplitude can be calculated
straightforwardly along the same lines and, for the case at hand, just restore the ERE.

As already pointed out above, we could have chosen the renormalization conditions by setting μ1 ∼ Mlo,
μ3 ∼ Mhi as an alternative to Eq. (21). Equation (25) shows that in such an approach, the amplitude TC2 is
even stronger enhanced relative to NDA, namely TC2 ∼ M−1

lo . On the other hand, the subleading interaction
with CR

4 ∼ Mlo is suppressed compared to NDA, reflecting directly the fine tuned value of the effective range
r ∼ Mlo. Regardless of these changes, all diagrams in the first line of Fig. 2 contribute at the same order
(∼ M−1

lo ) and must be resummed to generate the LO amplitude T (−1). The perturbative expansion of the
amplitude has the same form as before, but the corrections δC4 and δC6 are pushed to higher orders and need
not be taken into account at NNLO.

3.3 EFT for Singly Fine-Tuned P-Wave Systems

The less fine-tuned scenario corresponding to Eq. (4) can be treated analogously. The LO contribution to the
amplitude appears at order ∼ O(1) from the same set of diagrams as visualized in Fig. 3. Notice that while the
amplitude TC2 is enhanced by ∼ M−2

lo relative to NDA as a result of the fine-tuned value of CR
2 in Eq. (24),

the resummed contribution of diagrams shown in the first line of Fig. 3 is not enhanced any further since the
value of CR

4 is not fine-tuned. We further emphasize that differently to the EFT formulation with a dimer field
[39], the LO amplitude is valid up-to-and-including order Mlo and already incorporates the term −ik3 in the
denominator stemming from the unitarity cut.
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For the renormalization conditions specified in Eq. (21), corrections to the LO amplitude emerge from
diagrams involving higher-order vertices and insertions of T (0), where the power counting expression (28)
now takes the form

n = 2 − 2N +
∑

i

Vi (di − 2) ≥
{∑

i Vi (di − 4)
2 . (34)

Evaluating the diagrams shown in the second line of Fig. 3 with CR
2 and CR

4 given in Eqs. (24), (26) and
performing matching at the level of the ERE, the LEC CR

6 is found to be

CR
6 (μ1, μ3) = 9π2

[− 36πμ1(πr + 4μ1) − 3a(πr + 4μ1)
2μ3

3 + 8πav2μ
6
3

]

8amμ12
3

∼ O(1), (35)

while the expression for δC (2)
4 coincides with that of δC (3)

4 in Eq. (32). The resulting expression for the inverse
of the amplitude T (0)(k) + T (2)(k) is then identical to the one given in Eq. (33).

While the doubly fine-tuned scenario of Eq. (2) only supports wide shallow resonances with Re kres ∼
Im kres ∼ Mlo, where kres denotes the location of the resonance pole, less fine-tuned systems described by
Eq. (4) may feature narrow resonances with Re kres ∼ Mlo, Im kres ∼ M2

lo/Mhi. For the near-resonance
kinematics with k ∼ Re kres, the LO amplitude T (0)(k) is enhanced and scales as ∼ M−1

lo rather than ∼ M0
lo. In

such a narrow kinematical region, the expansion of the amplitude actually coincides with that shown in Fig. 2
apart from the contribution of the δC4-term, which appears already at NLO (i.e., in T (0)(k)).

It should be understood that a perturbative calculation of the amplitude as demonstrated above is, strictly
speaking, not necessary for the case of separable interactions considered here, since the LS equation can be
solved exactly for the potential truncated at any order. In this way, one can obtain exact expressions for the
renormalized LECs that incorporate all perturbative corrections δC (s)

n discussed above. For example, solving
the LS equation for the potential given by the first two terms in Eq. (3), performing subtractive renormalization
of the amplitude with μ5 = μ7 = 0 and matching the LECs to reproduce the scattering length and effective
range leads to

CR
2 (μ3) = 12π2

m(3πa−1 − 2μ3
3)

, CR
4 (μ1, μ3) = 9π2(πr + 4μ1)

m(3πa−1 − 2μ3
3)

2
, (36)

in agreement with Eqs. (24), (26) and (32). We further emphasize that choosing different renormalization
conditions with μ≥5 ∼ Mhi would still result in the same (perturbative) expansion of the scattering amplitude
after expressing the LECs in terms of physical parameters (i.e., coefficients in the ERE). One would, however,
lose the manifest power counting for renormalized loop diagrams written in terms of the LECs CR

n Cm,R
n , as

they would all appear to contribute at the same order.

3.4 Higher Partial Waves and the Choice of the Regularization Scheme

The proposed EFT formulation can be straightforwardly generalized to resonant systems in partial waves with
l ≥ 2. Focussing again on the cases in which the effective range function has no poles for k ∼ Mlo, the
strongest possible fine-tuning corresponds to the first l + 1 terms in the ERE being suppressed compared to
NDA and contributing at the same order as the unitary term, i.e. a−1

l ∼ M2l+1
lo , rl ∼ M2l−1

lo , v2, l ∼ M2l−3
lo , . . ..

A self-consistent Weinberg-like power counting scheme emerges by choosing the subtraction scales according
to μ2l+1 ∼ Mhi, μ2l+3 ∼ μ2l+5 ∼ · · · ∼ Mlo. Choosing the remaining μi ’s of the order of the hard scale,
i.e. μ1 ∼ μ3 ∼ · · · ∼ μ2l−1 ∼ Mhi, will result in the renormalized LECs that all scale according to NDA. On
the other hand, choosing some of these scales of the order ∼ Mlo would lead to some of the LECs accompanying
the interactions with 2l + 2 and more derivatives being suppressed. For μ1 ∼ μ3 ∼ · · · ∼ μ2l−1 ∼ Mlo,
the resulting scaling of the LECs CR

2l+2 ∼ M2l−1
lo , CR

2l+4 ∼ M2l−3
lo , . . . CR

4l ∼ Mlo is in a one-to-one
correspondence with the scaling of the fine-tuned coefficients in the ERE.

Last but not least, we emphasize that the proposed EFT formulation is by no means restricted to the use of
subtractive renormalization. Any regularization scheme that provides sufficient flexibility to incorporate the
proper renormalization conditions is equally well suited for our purpose, and the results of the calculations
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are, of course, independent on the choice of regulator. For example, one can apply dimensional regularization
in the partial wave basis (i.e., with the angular integrations being performed in d = 4 space-time dimensions)
as discussed in Ref. [59]. The regularized integrals J2s+1(k) with s ≥ l are then given by

J2s+1(k) =
∫

l2dl

2π2

ml2s

k2 − l2 + iε
→
(μ

2

)4−d
∫

l2dd−3l

2π2

ml2s

k2 − l2 + iε

= −m

π

(μ

2

)4−d
k2s(−k2 − iε)(d−3)/2 �

(
d − 1

2

)
�

(
3 − d

2

)
. (37)

While both the standard MS/MS scheme and the PDS scheme of Ref. [57] are too restrictive for the
considered fine-tuned systems, one can introduce a generalized PDS approach, where poles in d = 3 − 2l
dimensions,

J2s+1(k)
∣
∣∣
pole

= mk2(s−l)μ2l+1

22lπ [d − (3 − 2l)]
, (38)

are subtracted from the analytically continued expressions for the loop integrals in d dimensions by taking into
account the corresponding counterterms (which are finite in d = 4 dimensions). For the considered systems,
the resulting scheme represents a particular case of the more general subtractive renormalization approach
with all μi being set to zero except for μ2l+1, whose value is related to the DR scale μ via

μ2l+1 =
(

21−2lπ
)1/(2l+1)

μ. (39)

Alternatively, one can also choose to additionally subtract poles in 3, 1, . . . , 5 − 2l dimensions. In all
cases, setting μ ∼ Mhi is necessary for the resulting EFT to feature a consistent power counting scheme as
described above.

4 Wilsonian RG Analysis

In the previous section, we have discussed in detail the formulation of halo EFT for resonant P-wave systems
in terms of the renormalized potential. Below, we analyze the corresponding bare potentials by means of the
Wilsonian RG flow equation following the philosophy of Refs. [24,25,27] and discuss the implications for the
EFT.

4.1 Wilsonian RG Equation and Fixed-Point Solutions for P-Wave Scattering

In Sect. 3, we have presented a self-consistent formulation of the nonrelativistic EFT for resonant two-body
P-wave scattering by short-range forces. The key element of our consideration was the knowledge of the
general analytic structure of the on-shell scattering amplitude T (k) parametrized in terms of the ERE, which
allowed us to identify its expansion patterns for various scenarios and specify the appropriate renormalization
conditions. The Wilsonian RG approach we discuss below aims to achieve similar goals, but from a different
perspective and with no reliance upon the ERE. Instead, various expansion regimes corresponding to different
physical situations are identified by studying the RG flow in the parameter space describing generic (bare)
short-range potentials and analyzing perturbations around fixed-point solutions of the RG equation.

Following the philosophy of the Wilsonian RG analysis of Refs. [24,25], we study the evolution of a theory,
specified by an energy-dependent potential, upon continuously integrating out momentum modes above some
cutoff scale � while keeping the off-shell scattering amplitude unchanged. The running of the potential with
the cutoff can be inferred from the LS equation for the off-shell K -matrix in the partial-wave basis

K (p′, p, k) = V (p′, p, k, �) + m−
�∫

0

l2dl

2π2

V (p′, l, k, �) K (l, p, k)

k2 − l2
, (40)



51 Page 14 of 25 E. Epelbaum et al.

where the symbol −
∫

denotes the Cauchy principal value integral. The real K -matrix is related to the T -matrix
considered in the previous sections via 1/K (p′, p, k) = Re[1/T (p′, p, k)]. Taking the derivative with respect
to � and using the LS equation (40), we arrive at the differential equation

∂V

∂�
= m

2π2 V (p′, �, k, �)
�2

�2 − k2 V (�, p, k, �). (41)

The RG equation emerges by expressing all dimensionful quantities in units of � via k = k̂�, p = p̂�
and p′ = p̂′� and introducing the rescaled dimensionless potential

V̂ ( p̂′, p̂, k̂, �) = m�

2π2 V (p′, p, k, �), (42)

defined in such a way that the factor of m/(2π2) disappears from the LS equation. Expressing Eq. (41) in
terms of the rescaled quantities then yields the RG equation [24,25]

�
∂ V̂

∂�
= p̂′ ∂ V̂

∂ p̂′ + p̂
∂ V̂

∂ p̂
+ k̂

∂ V̂

∂ k̂
+ V̂ + V̂ ( p̂′, 1, k̂, �)

1

1 − k̂2
V̂ (1, p̂, k̂, �). (43)

When lowering the cutoff towards � → 0, the rescaled potential V̂ becomes cutoff independent once �
is pushed well below all low-energy scales of the theory, i.e. the potential flows towards a fixed point solution
V̂ ( p̂′, p̂, k̂) that describes a scale-invariant system. Notice that the RG equation always possesses a trivial fixed
point solution with V̂ ( p̂′, p̂, k̂) = 0 corresponding to the vanishing K -matrix.

Since we are interested here in halo EFT with short-range interactions only, we can, without loss of
generality, restrict ourselves to potentials of separable type. Nontrivial fixed points can then be constructed
straightforwardly following the approach of Ref. [60]. Specifically, consider rank-one separable potentials of
the form V̂ ( p̂′, p̂, k̂, �) = p̂′ p̂ ω̂(k̂, �) as relevant for the case of P-wave scattering. A more general case of
rank-two separable potentials is discussed in Appendix A. The RG equation (43) then turns into an ordinary
differential equation for ω̂(k̂, �), which becomes linear when expressed in terms of [ω̂(k̂, �)]−1:

�
∂ω̂−1

∂�
= k̂

∂ω̂−1

∂ k̂
− 3ω̂−1 − 1

1 − k̂2
. (44)

Integrating this equation for the fixed-point solution with ∂ω̂−1/∂� = 0, subject to the boundary condition
that ω̂(k̂) is an analytic function of k̂2 for k̂ � 1, leads to

ω̂U(k̂) = −6

2 + 6k̂2 − 3k̂3 ln 1+k̂
1−k̂

. (45)

This fixed point is relevant for our considerations as it describes P-wave systems in the unitary limit with
1/K (p′, p, k) = 0.

The trivial and the unitary fixed points V̂T = 0 and V̂U, in order, describe idealized situations we are not
really interested in. Rather, we want to describe realistic systems that can be approximated by perturbations
about these idealized cases. For such systems, the expansion patterns of the scattering amplitude in powers of
the ratio of the soft and hard scales can be determined by analyzing perturbations about the fixed point solutions
that scale with definite powers of � [24]. It is sufficient for our purposes to study purely energy-dependent
perturbations of the form

ω̂(k̂,�) = ω̂(k̂) +
∑

ν

Cν �νφν(k̂), (46)

where the Cν are dimensionful coefficients while the functions φν(k̂) and the powers ν are to be determined.
A more general case of momentum-dependent perturbations can be studied along the lines of Ref. [24], but
they generally appear to contribute at higher orders. Solving the linearized RG equation

νφν = 3φν + k̂
∂φν

∂ k̂
+ 2

ω̂(k̂)

1 − k̂2
φν, (47)
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subject to the constraint that the perturbations are analytic functions of k̂2 for k̂ � 1, one obtains

φν(k̂) = k̂2n with 2n = ν − 3 = 0, 2, 4, . . . , for ω̂(k̂) = ω̂T(k̂),

φν(k̂) = k̂2n[ω̂U(k̂)]2 with 2n = ν + 3 = 0, 2, 4, . . . , for ω̂(k̂) = ω̂U(k̂). (48)

Notice that for perturbations around nontrivial fixed points such as ω̂U(k̂), one can, alternatively to the
linearized equation (47) for ω̂(k̂, �), use the linear RG equation (44) for [ω̂(k̂, �)]−1 [61] to obtain

1

ω̂(k̂, �)
= 1

ω̂U(k̂)
−

∞∑

n=0

C ′
2n−3�

2n−3k̂2n, (49)

where C ′
i = Ci + O(C2). From the point of view of the RG flow, the appearance of negative values of ν

signals that the corresponding fixed point is unstable. For the unitary fixed point ω̂U, one has two relevant
directions corresponding to ν = −3, −1, see also Ref. [62], which bring the system away from ω̂U when
lowering the cutoff �. Potentials that do not reside on the critical surfaces of nontrivial fixed points8 flow
in the � → 0 limit towards the stable trivial fixed point, which possesses only irrelevant perturbations with
ν > 0. In this deep infrared (IR) regime, the running of the potential is, therefore, controlled by the expansion
around the trivial fixed point. If all dimensionless parameters Ĉν ≡ Cν/Mν

hi that characterize the system are
of order ∼ 1 (as one would naturally expect since Mhi is the breakdown scale of the derivative expansion), the
perturbative expansion of the potential around VT = 0 as defined in Eqs. (46), (48) also holds for � ∼ Mlo
and for Mlo � � � Mhi. Such situations describe weakly interacting “natural” P-wave systems, and the
scattering amplitude can be calculated perturbatively.

An alternative expansion of the potential around the unitary fixed point

V (p′, p, k, �) = 2π2

m�

p′ p
�2

{

ω̂U(k/�) +
(
Mhi

�

)3 ∞∑

n=0

Ĉ2n−3

(
k

Mhi

)2n [
ω̂U(k/�)

]2
}

(50)

can be interpreted most easily by noticing the one-to-one correspondence of the inverse potential with
[ω̂(k/�,�)]−1 fulfilling Eq. (49) with the ERE [24], which follows immediately if the LS equation is written
in the operator form as T−1 = V−1 + G0:

k2

K (k)
= − m

4π

(
−1

a
+ 1

2
rk2 + v2k

4 + · · ·
)

= −mM3
hi

2π2

∞∑

n=0

Ĉ ′
2n−3

(
k

Mhi

)2n

. (51)

The parameters Ĉ ′
i can thus be expressed in terms of the coefficients in the ERE:

Ĉ ′−3 = − π

2aM3
hi

, Ĉ ′−1 = πr

4Mhi
, Ĉ ′

1 = πv2Mhi

2
, . . . . (52)

For an expansion around the unitary fixed point to be valid, the perturbations in Eq. (50) must be suppressed
compared to the LO term corresponding to the unitary fixed point. For “natural” systems with all Ĉν ∼ 1,
the irrelevant perturbations ∝ Ĉν with ν > 0 are indeed small, but the relevant ones ∝ Ĉ−3 and ∝ Ĉ−1
are much larger than the first term in the curly brackets. Indeed, as we discussed above, “natural” systems
rather correspond to the expansion around the trivial fixed point. However, for systems with the strength of
the relevant perturbations being fine-tuned to unnaturally small values a−1 ∼ M3

lo and r ∼ Mlo as given in
Eq. (2), all perturbations in Eq. (50) are indeed suppressed compared to the LO term for Mlo � � � Mhi.
Such systems reside close to the critical surface of the unitary fixed point, thus being attracted to V̂U for not
too small values of �. For � ∼ Mlo, the two relevant perturbations become large and must be resummed.
For even smaller cutoff values, these increasing perturbations drive the system towards the trivial fixed point.
Notice that for the less fine-tuned scenario in Eq. (4), the relevant perturbations are not suppressed for any
� � Mhi. One, therefore, cannot expect such systems to be described by the expansion around the unitary
fixed point.

8 Such critical surfaces correspond to subspaces of the theory space, for which the potentials are attracted to nontrivial fixed
points in the limit � → 0.
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To summarize, the Wilsonian RG analysis deals with the behavior of generic bare potentials in the IR
regime with � � Mhi. It allows one to identify certain expansion patterns of the scattering amplitude in
powers of Mlo/Mhi from analyzing the running of the potentials near the fixed points of the RG equation. For
two-body scattering of nonrelativistic particles interacting via short-range forces we are interested in here, the
RG analysis can be carried out analytically, yielding, however, essentially an alternative derivation of the ERE
for the scattering amplitude. More interesting and nontrivial examples include applications of the RG analysis
to systems interacting with both long- and short-range forces as relevant for chiral EFT for nuclear systems,
see Refs. [26,63–69] for some work along this line.

4.2 Implications for the EFT

While our considerations in the previous section in terms of the bare potentials have been rather general, they
may appear unrelated to the subtractively renormalized formulation of halo EFT considered in Sect. 3. The
purpose of this section is to unmask the relationship between the two approaches and to address implications
of the RG analysis to the power counting of the halo EFT.

To establish a connection between the two approaches, we consider the bare energy-dependent potential
V (p′, p, k) defined in Eq. (15) and corresponding to the subtractively renormalized potential V R(p′, p) =
CR

2 p′ p + CR
4 p′ p(p′2 + p2). To verify that it indeed complies with the expansions discussed in the previous

section, it is more convenient to rewrite it in terms of the physical parameters a and r instead of CR
2 and CR

4 .
The resulting bare potential defines a family of physical systems characterized by the parameters a, r , μ1 and
μ3. From the two remaining scales, μ7 is, in fact, a redundant parameter since the dependence of the amplitude
on μ7 is completely eliminated by the running of the LEC CR

2 . Consequently, the potential does not depend
on μ7 after being expressed in terms of a and r . The scale μ5 does not enter the expression for the on-shell
amplitude, cf. Eq. (14), but affects the off-shell behavior of the potential and scattering amplitude. For the sake
of definiteness, we fix the off-shell behavior of the potential by choosing μ5 = 0 to obtain

V = −20π2 pp′

m

[
840a

(
2aμ3

3 − 3π
)3 − 3a2 (4μ1 + πr)

(
210

(
3π − 2aμ3

3

)2 (
p2 + p′2)+ 9

2
a2 (4μ1 + πr)

{
− 35

(
k2 − p2)

× (k2 − p′2)
[

3k3 ln
� + k

� − k
− 6k2(� − μ1) − 2(�3 − μ3

3)

]
+ 42�5 (k2 − p2 − p′2)+ 30�7

})]

×
[

42a2 (4μ1 + πr)
[
5k2(�3 − μ3

3) + 15k4(� − μ1) + 3�5
]

×
[
9π
(
a2�5r − 20π

)
+ 4a

(
9a�5μ1 − 20aμ6

3 + 60πμ3
3

)]

−50a
[
3k2(� − μ1) + �3 − μ3

3

] {
27π2 (a3�7r2 + 56π

)+ 8a
[
27a2�7μ1 (2μ1 + πr)

−56a2μ9
3 + 252πaμ6

3 − 378π2μ3
3

]}

−15ak3 ln
� + k

� − k

(
8a
{

27μ1

[
2a2�5μ1

(
7k2 − 5�2)+ πk2

(
7a2�5r − 70π

)
− 5πa2�7r

]
+ 280a2μ9

3

− 210aμ6
3

[
4ak2μ1 + π

(
ak2r + 6

)]+ 630πμ3
3

[
4ak2μ1 + π

(
ak2r + 3

)]}− 27π2
[
a3�5r2 (5�2 − 7k2)

+ 140π
(
ak2r + 2

)] )+ 1400
(
3π − 2aμ3

3

)4
]−1

. (53)

Notice that since we want the corresponding rescaled potential to fulfill the RG equation, we have taken
the limit � → ∞ for the renormalized integrals J R

n (k, μi ) in Eq. (15) to obtain the above expression. When
inserted into the LS equation regularized with a sharp cutoff, the above potential yields the �-independent
off-shell amplitude that reproduces Eq. (14) in the on-shell limit. It, therefore, fulfills Eq. (41) and may serve
as a specific example of generic bare potentials considered in the previous section.

It is now instructive to expand this potential in the ratio of the soft and hard scales as defined in the RG
analysis of Sect. 4.1. Specifically, we assign � ∼ k ∼ p ∼ p′ ∼ Mlo and choose μ3 ∼ Mhi to comply with
the considered physical scenario by ensuring the absence of low-lying poles in the inverse on-shell K -matrix,
see the discussion in Sect. 3. As for the remaining scale μ1, we consider here the case of μ1 ∼ Mhi, which
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allows one to simulate the correction to the potential needed to reproduce the shape parameter v2 by tuning
μ1.

• Consider first the doubly fine-tuned scenario of Eq. (2) with a−1 ∼ M3
lo, r ∼ Mlo. Expanding the bare

potential in Eq. (53), rescaled according to Eq. (42), in powers of ε ≡ Mlo/Mhi, one obtains

V̂ ( p̂′, p̂, k̂, �) = 12 p̂′ p̂
−4 + 6π

a�3 − 3k̂2
(
4 + πr

�

)+ 6k̂3 ln 1+k̂
1−k̂

+ 432 k̂4 p̂′ p̂μ2
1 �

[
− 4 + 6π

a�3 − 3k̂2
(
4 + πr

�

)+ 6k̂3 ln 1+k̂
1−k̂

]2
μ3

3

+ O(ε2). (54)

In agreement with the considerations of Sect. 4.1, cf. the second line in Eq. (48), the potential is described
in terms of the expansion around the unitary fixed point with resummed corrections stemming from the
relevant perturbations ∝ a−1, r . The LO term V̂ (0) leads to the effective range approximation k3 cot δ =
−a−1 + rk2/2, while the order-ε correction V̂ (1) generates the first shape term in the ERE if one chooses
μ2

1 = πv2μ
3
3/6 as mentioned above. Notice that the LO term corresponds to the theory that parametrizes

the renormalized trajectories connecting the unitary and trivial fixed points, see Appendix A for more
details.

• For the less fine-tuned scenario of Eq. (4) with a−1 ∼ M2
loMhi and r ∼ Mhi, the expansion of the potential

takes the form

V̂ ( p̂′, p̂, k̂, �) = 4 p̂′ p̂

π
(

2
a�3 − r

�
k̂2
) + 8 p̂′ p̂

3π2
(

2
a�3 − r

�
k̂2
)2

(

2 + 6k̂2 − 3k̂3 ln
1 + k̂

1 − k̂

)

+ O(ε3),

(55)

where the first and second terms contribute at orders ε and ε2, respectively. As expected from the general
arguments of the previous section, this situation corresponds to the expansion around the trivial fixed point
with resummed contributions from the scattering length and effective range. In this case, the LO potential
V̂ (1) yields

k3 cot δ =
(

−1

a
− 2�3

3π

)
+
(
r

2
− 2�

π

)
k2 + 2k4

π�
+ · · · , (56)

thus indeed providing the LO contribution to the ERE, accompanied with higher-order contributions.

One may now raise the question of what the expansion of the potential would correspond to if all subtraction
scales, including μ3, would have been chosen of the order of the soft scale in the problem, such that the
scattering amplitude would feature low-lying zero(s). As shown in Appendix A, the resulting resonant systems
are described by expansions around different unstable fixed points.

The above examples show that for nonrelativistic systems with a clear scale separation, low-energy physics
can be systematically described by expanding the bare potential around fixed point solutions of the RG equation.
This method utilizes the same kind of expansion in powers of Mlo/Mhi as the corresponding EFT, and it has
proven to be particularly useful for analyzing universality aspects of strongly interacting systems, see Ref.
[70,71] for review articles. In spite of the similarities, the RG approach outlined above does not directly translate
into the EFT program in the way it is usually formulated, which relies on (local) effective Lagrangians and
typically requires choosing � ∼ Mhi to exploit the full predictive power. The scattering length and effective
range entering the bare potential in Eq. (53), which obeys a well-defined expansion around the unitary fixed
point as given in Eq. (54), are, in fact, complicated nonlinear functions of the parameters entering the effective
Lagrangian, i.e. of the renormalized LECs CR

2 (μi ) and CR
4 (μi ), and the expansion pattern of the renormalized

potential and thus also of the scattering amplitude depends crucially on the choice of the scales μi (i.e. on
the renormalization conditions), see Sect. 3 for details, which play a role similar to the floating cutoff � in
the Wilsonian RG analysis. For S-wave systems near the unitary limit, all renormalization scale(s) can be
pushed down to μi ∼ Mlo as done in the KSW approach, and the correspondence between the Wilsonian and
Gell-Mann and Low RG approaches becomes evident. The scaling behavior of the perturbations in the bare
potential, expanded around the unitary fixed point, then translates into the scaling of the renormalized LECs
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in the KSW approach. The Wilsonian RG analysis thus provides an alternative derivation of the KSW power
counting. On the other hand, for resonant P-wave systems we are interested in here, with the coefficients in
the ERE scaling according to Eqs. (2) and (4), choosing μ3 ∼ Mlo corresponds, as already mentioned above,
to a different class of theories, see Appendix A for details. Thus, no KSW-like power counting scheme with
the LECs CR

6 , CR
8 , . . . being enhanced compared to their NDA scaling by the factor of M−6

lo , as suggested
by Eq. (50), can be formulated for the case at hand. The contributions of these operators to the amplitude
are, of course, still enhanced for resonant systems regardless of the choice of the renormalization conditions
(as follows from both the ERE and the Wilsonian RG analysis). In the Weinberg-like power counting scheme
formulated in Sect. 3, all LECs scale according to NDA and the large anomalous canonical dimensions of the
corresponding operators are generated through the choice of the renormalization conditions (μ3 ∼ Mhi), see
also Ref. [27] for a related discussion.

Last but not least, we emphasize that the essential ingredient of the Wilsonian RG method outlined above
is its restriction to the IR regime with � � Mhi, where the representation of the effective potential in terms
of the expansion in powers of momenta is valid. It cannot provide a systematic power counting for the bare
potential if the cutoff parameter is taken beyond the hard scale of the problem. This is further illustrated in
Appendix B, where the exact RG trajectory for a toy-model S-wave potential with long-range interaction is
calculated numerically. Generally, moving against the RG flow by increasing � beyond the hard scales of the
problem, without at the same time taking into account the corresponding new degrees of freedom, as it is done
in the lcRG-invariant approach, is a dangerous endeavor. It typically leads to complex values of the potential
when written in terms of the LECs or brings it to infinity for � → ∞ (unless the theory lies on a critical
surface of some nontrivial fixed point).

5 Summary and Conclusions

In this paper we have revisited the problem of renormalization in low-energy EFTs of nuclear interactions
on the example of resonant P-wave scattering. Following Refs. [30,39], we focused here on the fine-tuned
scenarios with the coefficients in the effective range expansion scaling according to Eqs. (2) or (4) and leading
to the appearance of shallow bound, virtual or resonance states. While such resonant systems have already
been extensively studied using EFT formulations with auxiliary dimer fields [30,39,44–49], see Ref. [53] for a
review article, we have employed here the effective Lagrangian written solely in terms of contact interactions.
Our main findings are summarized below.

• We started with applying the lcRG-invariant approach of Refs. [14,28,40] to resonant P-wave scattering
in Sect. 2. The presence of shallow states demands resummation of the contact interactions C2 p′ p and
C4 p′ p(p′2 + p2) when calculating the scattering amplitude. However, solving the Lippmann-Schwinger
equation and expressing the bare LECs C2(�) and C4(�) in terms of the scattering length and effective
range, we found no solutions in terms of real LECs compatible with either of Eqs. (2) and (4) if the
cutoff is taken well beyond the hard scale in the problem, � 	 Mhi. This result is in agreement with the
causality bounds derived in Ref. [51], but it appears to contradict the conclusions obtained using the EFT
with auxiliary dimer fields [30,39,53]. Indeed, keeping � ∼ Mhi shows that at least the less fine-tuned
scenario of Eq. (4) is easily realizable in terms of a simple quantum mechanical model, while it cannot be
accommodated by the lcRG-invariant approach.

• The above issue with the lcRG-invariant approach can be traced back to the inconsistent (from the EFT
point of view) renormalization of the LS equation with perturbatively non-renormalizable potentials, which
requires the inclusion of an infinite number of counterterms, see e.g. Ref. [33]. As repeatedly pointed out
in Refs. [21,23,33,35,38], arbitrarily large cutoff values can be employed in a way compatible with
the principles of EFT only after all UV divergences, generated by iterations of the LS equation, are
removed. In Sect. 3, we have shown how to consistently renormalize the scattering amplitude for resonant
P-wave scattering in halo EFT with no auxiliary fields using a subtractive scheme and utilizing the usual
QFT renormalization technique to all orders in the loop expansion. A separable form of the underlying
effective potential admits a closed-form expression for the (infinite set of) counterterms needed to absorb
all divergences in the LS equation as given in Eq. (15). The resulting scattering amplitude is finite in
the limit � → ∞, both perturbatively (i.e., at any order in the loop expansion) and non-perturbatively.
A self-consistent power counting scheme is obtained by choosing the subtraction scales according to
μ3 ∼ Mhi, μ5 ∼ μ7 ∼ Mlo. These renormalization conditions ensure that (i) all renormalized LECs
scale according to NDA, (ii) the renormalized contributions of diagrams obey manifest power counting,
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and their EFT order can be determined a priori using the power counting formulas (28) and (34) for the
doubly and singly fine-tuned scenarios of Eqs. (2) and (4), respectively, (iii) the renormalized LECs CR

2
and CR

4 can be expressed in terms of a and r regardless of their actual values9 in a close analogy with
the EFT formulations of Refs. [30,39], (iv) the residual dependence of the amplitude on the subtraction
scales μi is beyond the actual order of the calculation and (v) the EFT expansion is compatible with the
required scenarios in Eqs. (2) and (4). The choice of the scale μ3 ∼ Mhi is dictated by the need to avoid the
appearance of low-lying amplitude zeros to comply with the assumed scaling behaviors in Eqs. (2) and (4).
It is, therefore, not possible to formulate a KSW-like power counting scheme for the considered systems,
where all subtraction scales would be chosen of the order of Mlo and the enhancement of the resummed
LO contribution to the amplitude would emerge from the enhancement of the individual diagrams through
the enhanced renormalized LECs.
The EFT we propose is not restricted to P-waves and can be straightforwardly generalized to describe
resonant systems with any value of the orbital angular momentum. It also permits the use of dimensional
regularization, supplied with an appropriate subtraction scheme that allows sufficient flexibility to imple-
ment the proper renormalization conditions, such as e.g. the generalized PDS scheme. This feature might
be particularly beneficial for applications to halo systems in the presence of external electroweak probes.

• Next, we have performed a Wilsonian RG analysis of P-wave scattering in Sect. 4 following the philosophy
of Refs. [24,25], see also Refs. [27,62] for a closely related approach. Our main motivation here was to
clarify the relationship between this powerful method, formulated in terms of bare potentials, and the
subtractively renormalized halo EFT framework developed in Sect. 3. The key ingredient of the Wilsonian
RG analysis is the search for fixed point solutions of the RG equation (43). In addition to the trivial fixed
point that describes non-interacting systems, the unitary fixed point in Eq. (45) plays an important role
for doubly fine-tuned systems specified in Eq. (2). This unstable fixed point describes scale-free P-wave
systems with a−1 → 0 and r → 0 and has two relevant directions [62]. Once the floating cutoff � is
lowered well below the hard scale Mhi, so that the expansion of the potential in terms of contact interactions
is valid, all theories describing doubly fine-tuned systems in Eq. (2) get attracted by the unitary fixed point
when Mlo � � � Mhi. This allows one to identify a systematic and universal expansion of the scattering
amplitude for such fine-tuned systems by analyzing the scaling of perturbations around the fixed point for
� ∼ Mlo. For the case at hand, the Wilsonian RG analysis merely provides an alternative derivation of the
ERE, cf. Eq. (51). It also implies that the contributions of the shape-terms to the scattering amplitude for
doubly fine-tuned systems are enhanced by M−6

lo as compared with NDA, see Eq. (50). This is, of course,
in agreement with the ERE and, therefore, also with the EFT formulated in Sect. 3 as visualized in Fig. 2.
On the other hand, the behavior of singly fine-tuned systems specified in Eq. (4) is not expected to be
governed by the expansion around the unitary fixed point.
To further demonstrate the close relationship between the two approaches, we have considered the potential
in Eq. (15), which includes the resummed contributions of the counterterms in the subtractively renormal-
ized EFT framework. After taking the limit � → ∞ in the renormalized UV-convergent integrals J R

n ,
the resulting rescaled bare potential fulfills the RG equation (43). We have explicitly verified that the RG
flow of this potential indeed coincides with the expansion around the unitary fixed point for � ∼ Mlo,
provided μ3 is chosen of the order ∼ Mhi to comply with the conditions of Eq. (2). For singly fine-tuned
systems specified in Eq. (4), the expansion of the potential in powers of Mlo/Mhi for � ∼ Mlo is found
to coincide with that around the trivial fixed point with resummed corrections ∝ a−1, r . The general RG
flow of rank-two separable potentials like the one in Eq. (53) is discussed in Appendix A and shown to
exhibit a rather rich structure.

9 Notice that contrary to what is claimed in Refs. [40,41], renormalization by itself imposes no constraints on the relative
sizes and signs of the scattering length and the effective range. Similarly to the EFT formulation with auxiliary fields [30,39],
the framework we present here simply leads to the most general parametrization of the scattering amplitude compatible with
the principles underlying its construction as formulated in Weinberg’s theorem [72,73]. It does, in particular, not guarantee
the absence of unphysical poles on the upper half plane of the complex momentum plane. This feature follows from analytic
properties of the scattering amplitude for certain classes of energy-independent potentials [74], but it does not hold for energy-
dependent interactions like the one in Eq. (15). The absence of unphysical poles of the S-matrix in the lcRG-invariant analysis
of resonant S-wave systems in Ref. [40], the feature that has been attributed to renormalization in that paper, is simply a
consequence of their renormalization procedure being realized entirely within a quantum mechanical framework with energy-
independent interactions. For the EFT formulation we use here, the parameter sets leading to spurious poles of the S-matrix,
i.e. the corresponding combinations of a, r and vi , should be regarded as unphysical and discarded. Further constraints on the
P-wave scattering amplitude are discussed in Ref. [75].
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Last but not least, we emphasize that taking � ∼ Mhi or larger is not compatible with the systematics
underlying approximate expansions of the bare potential within the Wilsonian RG analysis. To illustrate
this point, we compared in Appendix B the exact RG flow for a toy-model S-wave potential, featuring a
long-range interaction, to the approximate result obtained using the lcRG-invariant approach. Fixing one
available parameter of the LO contact interaction as a function of � from the phase shift at some fixed energy,
the resulting low-energy phase shifts are found to show very mild cutoff-dependence for � 	 Mhi, thus
(approximately) satisfying the condition of the RG invariance of the lcRG-invariant approach. However, the
obtained limit-cycle-like �-dependence of the LO potential disagrees with the smooth RG flow behavior
of the underlying model, a result that might have been expected given that the LO approximation to the
bare potential is only valid for � below Mhi.

Previous halo EFT studies of resonant systems in P- and higher partial waves made use of the formulations
with auxiliary dimer fields [30,39,44,45,53], which are usually claimed to be introduced for convenience,
see e.g. Ref. [14]. In this paper we have explicitly shown that the EFT formulations with and without dimer
fields are indeed equivalent. A remarkable aspect of this equivalence is that all diagrams contributing to the
LO scattering amplitude in halo EFT with auxiliary dimer fields are renormalizable, since all divergences from
dressing the dimeron propagator can be absorbed into its residual mass and the particle-dimeron coupling
constant. In contrast, the effective potential involving contact interactions in the formulation without auxiliary
fields is not renormalizable in the usual sense. A proper renormalization of the scattering amplitude, therefore,
requires taking into account contributions of an infinite number of counterterms. This unavoidably introduces
a dependence on the subtraction scales in the renormalized amplitude, which reflects the freedom in choosing
the finite pieces of the corresponding coupling constants and can be kept to be of a higher order by using the
appropriate renormalization conditions as discussed in Sect. 3. The resulting subtractively renormalized EFT
is indeed equivalent to halo EFT with auxiliary fields. On the other hand, we have shown that these two EFT
formulations are not equivalent to the lcRG-invariant approach of Refs. [14,28,29,40] if the requirement of
� 	 Mhi is to be taken seriously.
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Appendix A: RG Flow for Rank-Two Separable P-Wave Potentials

The purpose of this Appendix is to provide a detailed discussion of the RG invariant bare potential of Sect. 4.2
and its interpretation from the point of view of the RG flow. To this aim, we consider a more general class of
energy-dependent potentials as compared to our considerations in Sect. 4.1 of a rank-two separable form:

V (p′, p, k, �) = χT (p′)ω(k, �)χ(p) with χ(p) = (p, p3)T . (A1)

Here and in what follows, symbols in bold refer to matrix-valued functions. In particular, ω is a real 2 × 2
matrix that depends on the cutoff � and the on-shell momentum k. This is the type of potential we used to
compute the LO scattering amplitude for resonant P-wave systems in Sect. 3, cf. Eq. (15).
We consider a generic bare potential as defined in Eq. (A1), which is required to yield a cutoff-independent
off-shell scattering amplitude and thus fulfills Eq. (41). Following Ref. [60], we derive nontrivial fixed-point

http://creativecommons.org/licenses/by/4.0/
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solutions of the RG equation (43) for the rescaled potential V̂ ( p̂′, p̂, k̂). We start with rewriting Eq. (43) in the
form of the matrix equation for ω̂(k̂, �) defined via V̂ ( p̂′, p̂, k̂, �) = χT ( p̂′) ω̂(k̂, �)χ( p̂):

�
∂ω̂

∂�
=
(

1 0
0 3

)
ω̂ + ω̂

(
1 0
0 3

)
+ k̂

∂ω̂

∂ k̂
+ ω̂ + ω̂

χ(1)χT (1)

1 − k̂2
ω̂. (A2)

For invertible matrices ω̂, the above RG equation can be rewritten into a linear differential equation for ω̂
−1:

− �
∂ω̂

−1

∂�
= ω̂

−1
(

1 0
0 3

)
+
(

1 0
0 3

)
ω̂

−1 − k̂
∂ω̂

−1

∂ k̂
+ ω̂

−1 + χ(1)χT (1)

1 − k̂2
, (A3)

which reduces to the uncoupled first-order partial differential equations for the components of the matrix ω̂
−1:

− �
∂ω̂−1

11

∂�
= 3ω̂−1

11 − k̂
∂ω̂−1

11

∂ k̂
+ 1

1 − k̂2
,

−�
∂ω̂−1

12

∂�
= 5ω̂−1

12 − k̂
∂ω̂−1

12

∂ k̂
+ 1

1 − k̂2
,

−�
∂ω̂−1

22

∂�
= 7ω̂−1

22 − k̂
∂ω̂−1

22

∂ k̂
+ 1

1 − k̂2
. (A4)

Here, we restrict ourselves to Hermitian potentials, so that ω̂−1
12 = ω̂−1

21 . For �-independent ω̂, we can easily
integrate these equations, subject to the boundary condition that ω̂−1

i j (k̂) are analytic functions of k̂2, to obtain
the potential corresponding to the rank-two fixed-point solution of the RG equation

V̂rank−2( p̂
′, p̂, k̂) = (

p̂′, p̂′3)
(

Re Ĵ3(k̂) Re Ĵ5(k̂)
Re Ĵ5(k̂) Re Ĵ7(k̂)

)−1
(

p̂

p̂3

)

= − 5 p̂′ p̂
5 − 7k̂2

⎡

⎣7
(
k̂2 − p̂′2) (k̂2 − p̂2

)
+ 6

(
5 − 7 p̂′2) (5 − 7 p̂2

)

8 + 80k̂2 − 210k̂4 − 15k̂3
(

5 − 7k̂2
)

ln 1+k̂
1−k̂

⎤

⎦ ,

(A5)

where the rescaled dimensionless integrals Ĵn(k̂) are defined in terms of the integrals Jn(k) from Eq. (6) via

Ĵn(k̂) = 2π2

m

1

�n
Jn(k̂�). (A6)

Notice that apart from V̂rank−2( p̂′, p̂, k̂) and the trivial potential V̂T( p̂′, p̂, k̂) = 0, any potential corresponding
to a non-invertible matrix ω̂(k̂) with det ω̂(k̂) = 0 also represents a fixed-point solution of the RG equation
(which corresponds to K (k) = 0). Interestingly, if one drops the second term in the squared brackets of
Eq. (A5), the resulting scale-free potential corresponds to such a fixed-point solution of the RG equation with
a non-invertible matrix ω̂(k̂).
The above rank-two separable fixed point has nine relevant perturbations, which can be parametrized by
some (dimensionful) quantities α1, α2, . . . , α9. The resulting RG-invariant rescaled potential with resummed
relevant perturbations can be written in the form

V̂ ( p̂′, p̂, k̂, �) = (
p̂′, p̂′3)

(
α1
�3 + α2

�
k̂2 + Re Ĵ3(k̂)

α3
�5 + α4

�3 k̂
2 + α5

�
k̂4 + Re Ĵ5(k̂)

α3
�5 + α4

�3 k̂
2 + α5

�
k̂4 + Re Ĵ5(k̂)

α6
�7 + α7

�5 k̂
2 + α8

�3 k̂
4 + α9

�
k̂6 + Re Ĵ7(k̂)

)−1 (
p̂
p̂3

)
, (A7)

and corresponds to the on-shell K -matrix

2π2k2

m K (k)
= α1 + α2k

2 −
{
α3 + k2

[−α1 + α4 + (α5 − α2) k2
]}

2

α6 + k2
{−2α3 + α7 + k2

[
α1 − 2α4 + α8 + (α2 − 2α5 + α9) k2

]} .

(A8)
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It is not hard to see that the RG-invariant bare potential corresponding to the subtractively renormalized
scattering amplitude considered in Sects. 3 and 4.2, i.e. the potential given in Eq. (15) with J R

n being replaced
by J R, ∞

n ≡ lim�→∞ J R
n , represents a special case of Eq. (A7) with

α1 = α4 = α8 = μ3
3

3
, α2 = α5 = α9 = μ1, α7 = μ5

5

5
, α3 = 1

5C̃ R
4

+ μ5
5

5
, α6 = − C̃ R

2

5(C̃ R
4 )2

+ μ7
7

7
.

(A9)

The last two equalities show that the “couplings” μ5 and μ7 are indeed redundant as already pointed out in
Sect. 4.2. Alternatively, following the procedure of that section, one can choose to parametrize the theory
directly in terms of the physical parameters a−1, r instead of the LECs CR

2 , CR
4 . For μ5 = 0, Eq. (A9) then

turns to10

α1 = α4 = α8 = μ3
3

3
, α2 = α5 = α9 = μ1, α7 = 0, α3 = 2(3πa−1 − 2μ3

3)
2

9(πr + 4μ1)
,

α6 = −8(3πa−1 − 2μ3
3)

3

27(πr + 4μ1)2 , (A10)

and the resulting effective range function coincides with that given in Eq. (14). The scale-free limit of the
potential specified through the above equation is not uniquely defined and depends on the order the limits
a−1 → 0, r → 0, μ1 → 0 and μ3 → 0 are taken. It corresponds to either V̂U( p̂′, p̂, k̂) in Eq. (45) if one
takes the limits e.g. in the order μ3 → 0, μ1 → 0, r → 0 and a−1 → 0 or to V̂rank−2( p̂′, p̂, k̂) if the limits
are taken e.g. in the order μ3 → 0, μ1 → 0, a−1 → 0 and r → 0.
Interestingly, the above choice of the LECs CR

2 and CR
4 leading to Eq. (A10) is not the only possibility

compatible with the given values of the scattering length and effective range. One can see from Eq. (A8) that
setting α3 = 0 via C̃ R

4 = −1/μ5
5 reproduces the first two terms in the ERE if the subtraction scales μ1 and μ3

are tuned to the values μ1 = −πr/4, μ3
3 = 3πa−1/2. The resulting potential is determined by the parameters

α6, α7, a−1 and r via

α1 = α4 = α8 = 3π

6
a−1, α2 = α5 = α9 = −πr

4
, α3 = 0. (A11)

Clearly, this solution is unphysical from the EFT point of view, since the reproduction of the scattering length
and effective range is achieved via fine tuning of an infinite string of higher-order interactions, realized through
a particular choice of the subtraction scales μ1 and μ3.
Specifying the theory by fixing the parameters αi at some high resolution scale �, one can follow the renor-
malized trajectories out of the fixed point by considering the RG flow down to � → 0, which generally (but
not necessarily, see e.g. Ref. [60]) ends in the trivial fixed point. Most importantly, regardless of a particular
model, all potentials that describe the systems we are interested in with the coefficients in the ERE scaling
according to Eqs. (2) and (4)11 feature a universal RG flow behavior once the cutoff is lowered below the hard
scale Mhi. In particular, for the doubly fine-tuned scenario in Eq. (2), they first get attracted to the unitary
fixed point V̂U once Mlo � � � Mhi before flowing towards the trivial fixed point for � � Mlo. For other
systems, the running may be more exotic. For example, choosing μ3 ∼ Mlo in Eq. (A10) while keeping the
scaling of a−1 and r as in Eq. (2), the potential gets attracted to the fixed point with a non-invertible matrix
ω̂(k̂) corresponding to the first term in the square brackets of Eq. (A5) for � � Mlo, before finally running to
the trivial fixed point for � � Mlo.

10 Notice that it is not always possible to express real values of the LECs CR
2 and CR

4 in terms of a and r if μ5 
= 0.
11 For the model in Eq. (A10), this requires choosing μ3 ∼ Mhi or higher to prevent the appearance of a low-lying amplitude

zero, while there are no restrictions on the choice of μ1. For the model in Eq. (A11), the remaining coefficients α6, α7 can be
chosen to scale with either powers of Mlo or Mhi.
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Fig. 4 The S-wave phase shift for the underlying toy model and the LO approximation shown by the solid red and dashed blue
lines, respectively. The short- and long-dashed lines correspond to the cutoff values of 300 and 450 MeV, respectively, while the
shaded area visualizes the corresponding cutoff dependence of the phase shift

Appendix B: RG Trajectory of a Toy Model Potential with a Long-Range Interaction

As already pointed out in Sect. 4.2, the Wilsonian RG analysis does not provide a systematic expansion for
the bare potential in the UV regime with arbitrarily large cutoffs as relevant for the lcRG-invariant approach.
To illustrate this point, we consider below the exact RG trajectory of the toy model potential of Ref. [33] and
compare it to the LO cutoff-dependent potential of the lcRG-invariant approach. The toy model potential is
given by

V (r) = α
(
e−m1r − e−Mr

)

r3 + α (m1 − M) e−m1r

r2 + α (M − m1)
2 e−m2r

2r

−αe−m1r

6
(2m1 − 3m2 + M) (M − m1)

2 , (B1)

where M ∼ Mlo and m1 ∼ m2 ∼ Mhi refer to the masses of the exchanged “mesons”. For the demonstration
purpose below, we choose the numerical values of the parameters to be α = 5×10−5 MeV−2, M = 138.5 MeV,
m1 = 750 MeV and m2 = 1150 MeV. Since the strength of the interaction α is equal for all terms, the potential
V (r) vanishes for r → 0 but behaves as −α e−Mr/r3 for large r . More details of the model can be found
in Ref. [33]. Regarding the above potential as an ”underlying” interaction model, we construct below the LO
EFT approximation using the lcRG-invariant approach and compare it to the exact Wilsonian RG trajectory
of the ”underlying” potential.
We consider the LS equation for the S-wave K -matrix in the center-of-mass frame of two particles with equal
masses m = 1000 MeV

K (p′, p, k) = V (p′, p) + m−
∞∫

0

dl l2

2π2 V (p′, l) 1

k2 − l2
K (l, p, k) . (B2)

The resulting phase shift as a function of the momentum k is shown by the red line in Fig. 4. At low energies,
we can integrate out the high-energy modes and obtain the scattering amplitude by solving the regularized
equation

K (p′, p, k) = V (p′, p, k, �) + m−
�∫

0

dl l2

2π2 V (p′, l, k, �)
1

k2 − l2
K (l, p, k), (B3)

where the potential V (p′, p, k, �) satisfies the equation

V (p′, l, k, �) = V (p′, p) + m−
∞∫

�

dl l2

2π2 V (p′, l) 1

k2 − l2
V (l, p, k, �). (B4)
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Fig. 5 RG trajectories of the on-shell potentials (k = 20 MeV) for the toy model. Solid (red) and the dashed (blue) lines correspond
to the underlying toy model and the LO approximation, respectively, as discussed in the text. The right panel is a zoomed version
of the left one showing the low-cutoff region

Equation (B4) gives the exact Wilsonian RG trajectory of the effective potential.
For low cutoffs, the potential V (p′, l, k, �) can be approximated by VLO, the Fourier transform of the delta-
potential plus the long-range part of the interaction −α e−Mr/r3. Choosing some cutoff value between small
and large scales of the problem (� ∼ 0.4 GeV), we adjust the strength of the contact interaction C(�) such
that at very low energies, the phase shifts of the underlying model are well described by the solution to the
equation:

KLO(p′, p, k) = VLO(p′, p) + m−
�∫

0

dl l2

2π2 VLO(p′, l) 1

k2 − l2
KLO(l, p, k). (B5)

The resulting phase shifts are plotted as a function of k in Fig. 4 together with the phase shifts corresponding
to the underlying model.
Following the lcRG-invariant approach, we now take arbitrarily large values of the cutoff in the LO approxi-
mation and obtain, by adjusting the contact interaction as a function of �, (almost) cutoff-independent results
for phase shifts at low energies. The corresponding cutoff-dependent on-shell potential for k = 20 MeV is
plotted in Fig. 5 together with the exact RG trajectory of the underlying toy-model potential, obtained by
solving numerically Eq. (B4). While the LO potential does approximate well the exact RG trajectory for �
around ∼ 300 MeV, the limit-cycle behavior of the LO potential for larger values of the cutoff is just an artifact
of the lcRG-invariant approach.
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