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Abstract Inthis work, we analyze the semi-leptonic decays
B%/D° — (ap(980)* — m*n)[Fv within light-cone sum
rules. The two and three-body light-cone distribution ampli-
tudes (LCDAs) of the B meson and the only available two-
body LCDA of the D meson are used. To include the finite-
width effect of the ag(980), we use a scalar form factor to
describe the final-state interaction between the 77 mesons,
which was previously calculated within unitarized Chiral
Perturbation Theory. The result for the decay branching frac-
tion of the D decay is in good agreement with that measured
by the BESIII Collaboration, while the branching fraction of
the BY decay can be tested in future experiments.

1 Introduction

The study of scalar mesons is an interesting topic in the
hadron physics, partly due to the fact that the scalar mesons
have the same quantum numbers as the QCD vacuum. Fur-
thermore, the highly non-perturbative nature of the strong
interactions at low energies makes it difficult to understand
the internal structure and dynamics of these particles. There
are a number of scenarios to understand the structure of the
isovector scalar meson ap(980), like a g¢g state, a four-quark
state, a molecular state, the glueball picture, or a hybrid states
[1-18]. However, until now there is no definite conclusion on
which scenario is correct, however, there are some indications
in favor of the molecular picture.

The semi-leptonic heavy meson decays are ideal platforms
for the study of scalar mesons such as the ap(980). Exper-
imentally, such processes have a much cleaner background
than e.g. hadronic decays, and theoretically, all the strong
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dynamics is encapsulated in the hadronic transition matrix
elements, which are the objects to be dealt with. Nowa-
days there are a number of theoretical investigations for the
B — ap(980) [19-24] and the D — ap(980) transitions
[25-29]. In the narrow-width limit, where the ag(980) is
considered as a quasi-stable particle, calculating these single-
body transitions is enough for predicting the decay branching
fractions. However, in real physical processes the ay(980) is
an intermediate resonance which can further decay into light
mesons. Recently, the BESIII Collaboration has announced
a measurement of the branching fraction [30]:

B (DO — (a0(980) — 71_17) e+v)
= (1.33£0.09) x 1074, )

Note that the actual measured final-state is 7. Thus to ana-
lyze the full decay process one must consider the finite-width
effect and should also deal with the final-state interaction
between the 7 and the 7.

As shown in the previous works, see e.g. [31-33], the S-
wave two-meson final-state interaction can be described by a
two-meson scalar form factor. This is justified by the Watson—
Migdal theorem [34,35], which ensures that the phase of the
B/D — mn transition matrix element in the semi-leptonic
decay must be equal to the phase of the w7 elastic scatter-
ing amplitude. The two-meson scalar form factor was calcu-
lated using unitarized Chiral Perturbation Theory (uChPT)
assisted by a numerical iteration based on a dispersion rela-
tion [36]. Such a scalar form factor satisfies the unitary con-
straint and is free from unphysical singularities (which often
appear in the framework of uCHPT, see e.g. the discussion in
Ref. [37]). In those previous works the transition matrix ele-
ment was calculated from Light-Cone Sum Rules (LCSRs),
where the light-cone distribution amplitudes (LCDAs) of the
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scalar meson or the generalized LCDAs for the final two
mesons are used. In this work, instead of assuming the struc-
ture of the ap(980) and test it with the corresponding decay
width calculation, we aim to theoretically reproduce the mea-
sured branching fraction of D% — (ap(980) — 7w n)etv.
Therefore, we choose to use the LCDAs of the initial heavy
meson and create the w7 state by interpolating a scalar cur-
rent with the same quantum numbers on the vacuum. For
the detailed calculation procedure we follow Refs. [38,39],
where the transitions form factors for B — (p — wm) and
By — (f0(980) — K K) were calculated.

This article is organized as follows: Sect. 2 is an illustra-
tion on the framework of the LCSR, where we derive the sum
rule equation for the B®/D® — 71 form factors by consid-
ering the finite-width effect. Section 3 gives the numerical
results including the form factors and the decay branching
fractions. Section 4 contains a brief summary. Some techni-
calities are relegated to the appendices.

2 B/D" — n*y form factors in a LCSR

In the spirit of LCSRs, to study the transition B%/D? —
rrin, one should start with a correlation function. In the case
of a BY decay with the b — u transition it reads

=i f d*x ¢'P*(0|T {J‘?”(x)JMV—A(O)} IB(p + q)) ,
()

where J9* is the scalar current with the same quantum num-
ber as the final S-wave 7 77 state, and J ;Y —4 ig the standard
V — A current. Their explicit forms are

T ) = d@u), T/ 7A0) = @0y (1 — y5)b(0).

3

For the case of a D” decay with the ¢ — d transition, the
correlation function is similar except that J9 and JIY_A
should be changed to J#¢ = id and J,Y_A = ‘;Vu(l —
ys)c, respectively. The correlation function in Eq. (2) will
be calculated both at the hadron as well as the quark—gluon
level, and the results from these two distinct approaches are
related by quark—hadron duality.

2.1 Hadron level

In terms of a dispersion relation, the correlation function in

Eq. (2) can be expressed as:
1 r°  Im I, ¢%)

M (p, q) = —/ ds 4
T Jo

s —p?—ie

“)
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If the narrow-width approximation is applied, the imaginary
part above is just a single meson pole of the ay(980) plus a
continuous spectrum including higher excited states. How-
ever, if the finite-width effect is considered, the single meson
pole should be replaced by a multi-meson state, which has a
finite distribution width. The lowest two-meson state created
by J du g nin, while the heavier two-meson state of K K
can be absorbed into the continuous spectrum. The imagi-
nary part of the correlation function thus reads

2i Im I1f/ (s, ¢*) = Disc [T (s, %)
=i / dry2)*8* (p — k) (0179 )7 (k1) (k)

< (k)Y "2 OB (p+q)) + -+ (5)

where the ellipsis denotes the higher continuous spectrum
contribution, which will be omitted later for convenience.
Further, dt is the two-body integral measure:

&Pk 1 Ph 1
 Qm)32EL, (2n)32E, ]

d‘Ez (6)

with s = p2 and k = k| + ko. The first matrix element in
Eq. (5) is parameterized by the two-meson scalar form factor:

(7 (kD)0 (ka) [T (0)[0) = Bo Fry (k2). N

Here, By is proportional to the QCD quark condensate:
3F?By = —(itu + dd + 5s), with F the pion decay con-
stant in the SU(3) chiral limit. Fy, (k%) has been calculated in
the Ref. [36] using uChPT associated with a dispersion rela-
tion iteration to ensure the unitary constraint and remove the
unphysical singularities. The obtained form factor is appli-
cable up to a relatively high energy of around 1.2 GeV, and
its real and imaginary parts are shown in Fig. 1. The three
lines correspond to the form factors derived by three sets
of low-energy constants (LECs) of ChPT. The one labeled
“old” is taken from earlier works [40,41]. The other two sets
are fitted in Ref. [36] using the latest data, where the authors
used two fit approaches denoted as Fit 1 and Fit 2. In this
work, all the three results shown in Fig. 1 will be used, and
the difference between them will be taken as the uncertainty
of the numerical results.

On the other hand, the second matrix element in Eq. (5) is
parameterized by the B — 75 form factors [42]. For the
S-wave component, only the axial-vector current contributes.
Its matrix element is parameterized as:
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Fig. 1 Left panel: real (red solid lines) and imaginary (blue dashed lines) parts of Fm,(kz), Right panel: the norm of an(kz). For further details,

see Ref. [36]

— i (wkn (k) iy, vsb| Bq + k)

_ 2Vq* (kg
=fEt (ks = )
Fi (; 44q-k(g-k 4k gk
+\/k_(ku AB Kt AB q”)’

®)

where k = ki — ko, ¢ - k = (1/2)(m% — k> — ¢%) and
Ap = m‘l‘; + kgt -2 (mlzgk2 + m%,q2 + kzqz). Each
form factor F; (i =0, t, ||) is a function of g2, k% and

- A 2 JAphgy (k2

2 e e o8 Ox

©))
where 0, is the angle between the pion momenta ki and g in
the rest-frame of the 7 — 7 system and A, (k) = mf, —l—mf, +
K4 =2 (m2m2 + m2k? 4+ m2k?). As llustrated in Ref. [42],

one can apply a partial wave expansion on the form factors
F; using the associated Legendre polynomials:

o
Foo(q* k2.q k) =Y N2+ 1F)(q* k) P” (cos by,

=0

Z V2 +1F" (4, k2

=1

(1)
_ (cos Bx)
Fi(q* K, q - k) = L=
sin 6,
(10)

When this expansion is inserted into Eq. (5), the two-body
phase space integration [ dt, will act as an S-wave projector
so that the contribution of F| vanishes. Applying Eqs. (7),

(8) and (10) to Eq. (5), and performing the phase space inte-
gration, one arrives at

Heo 2y _ b V(S
ImHM(s,q )— ﬂ s B()F:n(s)
O, 2, 49u O (o 2y 2V q
X | F7(s,q°)—— + F, $,q°) —— | pu — q .
[t i R ) 2 (- 2ot

(11)

Using the dispersion relation, Eq. (4), we can obtain the cor-
relation function at the hadron level.

2.2 Quark—gluon level

At quark—gluon level, the correlation function in Eq. (2)
should be calculated in the deep Euclidean region with
p?, g% < 0 utilizing the operator-product-expansion (OPE).
For the BY decay the OPE is performed in the heavy quark
limit with the bottom quark field being translated to an
effective field in the heavy quark effective theory (HQET),
b(x) = exp(—impv - x)by(x), where v is the four-velocity
of the BC. The correlation function is expressed as a convo-
lution of a perturbative kernel and the B meson light-cone
distribution amplitudes (LCDAs).

Since the internal light quark propagates in the back-
ground field of soft gluons, in the calculation of the per-
turbative kernel, one should use a light quark propagator of
the form [43,44]:

(01T {gi (x)g;(0)}|0)
d*k
(2m)*

i(S,-j
/k_mq

—ikx

@ Springer
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Fig. 2 Diagrams for the calculation of the quark—gluon contribution to
the two and three-body B meson LCDAs. The circle cross denotes the
V — A current while the black dot denotes the interpolating current for
the 7 state. The gray bubbles represent two- or three-particle LCDAs
of the B meson

Ak e [
—ig (27r)4e “‘/0 du Gij (ux)
1 k+my
5o 50wt S UV | (12)
2 (mz% B k2) mg k

where i, j are the color indices, u is a dimensionless param-
eter, G,y = wat” is the gluon field strength tensor. Here,
the fixed-point gauge x - A(x) = 0 is used.

The corresponding diagrams are shown in Fig. 2. In the
diagram (a) the u quark line is a free propagator and the gray
bubble denotes two-particle B meson LCDAs. In the diagram
(b) the u quark absorbs a soft gluon emitted from the B meson
state, and the gray bubble denotes the three-particle B meson
LCDAs. The two and three-particle B meson LCDAs are
defined as [45-438]:

(01du 0L, 01645 ©)] BY)

. 00
— _lmeB / dwe—iwv-x
4 Jo

B\ _ 4B
X {(1+¢) (¢£<w)+wx) VS} ,
VX ﬂo{

<0 | () G p (ux) by (0) | BS>
_ fpmp /oo dw/m déefi(aH»ué)wx
4 Jo 0
< {9 @ = von) Wa@. &) = ¥y (@.£)
— 03, Wy (@, &) — (W) Xa(o, &)
+ (W) (Ya(@, £) + W(w, )

- (v.x—x)z(xwp —xpv)W(w, &)
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+ w?é—x)z<mp ) Z(@. )

xl)l

+ i €3pap (VXA (@,8) — yPYa(w,8)) ys]ys}ﬂa,

(13)

V-X

where «, B are spinor indexes, w and & are the plus com-
ponents of the light-quark and gluon momentum, respec-
tively, in the B meson. [x, 0] is the Wilson line along the
light-cone direction. As illustrated in Ref. [49], in the deep
Euclidean region p?, ¢> < 0, the space-time interval x of
the correlation function in Eq. (2) is almost on the light-cone:
x? ~ —1/g* — 0. Therefore, the fixed-point gauge x-A = 0
used for the light quark propagator in Eq. (12) is equivalent to
the light-cone gauge n - A = 0, so that the Wilson line [x, 0]
can be set to 1. The explicit form of the B meson LCDAs can
be found in Appendix A.

In Eq. (13), the v - x in the denominator is difficult to be
dealt with directly. To overcome this difficulty, we define a
new set of LCDAs as

vV (w) =fwdm/f<r>, @ (w) =/wdr ARICSY
0 0

d (n)
V@) (14)

V() =

where 1 can be any LCDA appears in Eq. (13). The advan-
tage of this definition is that, with the help of integration by
part, one can eliminate the v - x denominator:

/d4x e /Oodw iovs Y@
0

(v-x)"

— .n/d4x elp-x/O d(,() e*ta)uxw(n)(w)_” . (15)

The ellipsis denotes the terms independent of w. Note that
during the integration by part, since 1 (0) = 0, the boundary
term at w = O vanishes trivially. On the other hand, it seems
that the boundary term at @ = oo is nonzero since ™) (00) is
finite. However, when w — o0, the exponential exp(—iwv -
x) fluctuates heavily during the integration of x. Thus the
boundary term at w = oo is also zero. A detailed explanation
is given in Appendix B.

Unlike for the B meson, there is no systematic develop-
ment of the D meson LCDAs in the literature. The only avail-
able one is the two-particle LCDA defined in Refs. [50,51]:

(01, (x)c} (0)[ DO (p))

= 08 [+ oy, [ au e o),
(16)

where i, j are the color indices, and fp is the D meson decay
constant. ¢ p (u) is the two-particle LCDA of D meson, which
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has the form
ep) =6u(l —u)[1 —Cy(1 —2u)] . (17)

Cy is a parameter ranging from O to 1, which can be fixed
from experiments, C; = 0.7 [50].

In the case of the B decay, the OPE calculation for the
correlation function with contributions from the two-particle
LCDAs are

o™ (p, q)?
*© 1
= ifpmp / de—{¢+(w)[(m + w)vy, — Pu}
0 2

— 4<I>(1)(a))vu}

2if /Ood L — 2 ) o0
— 21 m w—F= —_ w
BMB A 2 -

2 B

X |:(m —w)py + <i<m% +p2 — q2> — p2>vu],
mpg

(13)

where m is the u quark mass m, in the MS scheme at the
scale u = 2 GeV, which is given by the Particle Data Group
(PDG) [52]. For the DY decay m denotes the d quark mass
mg. The discontinuity of the correlation function across the
complex plane of p? comes from the denominators 1/ A%
On the other hand, the correlation function contributed by
the three-particle LCDAs contains the similar denominators
1/ Ag’. Howeyver, it is much more involved so we do not show
it here explicitly. These denominators read

Az =[p — (@ +u&)v)* —m?
= <1 _ M) [p2 — E(a),é‘,qz,m2)],

mp

Az = A3(§ =0),
2 p?) = 2T (2 _ g2
E(w’g’q’m)_mB—w—u"E(mB q)
_ mg[(@+u$)* —m?]
mp —w — ué '

(19)

Extracting the discontinuity across the complex plane of
p? for the correlation function is equivalent to extracting the
discontinuity of 1/A ;. For the single power terms 1/A2 3,
their discontinuity can be obtained by the replacement

AL3 — (—2ni)mB_m—Cf_u§8 <p2 -2 (a), £,q°, m2>) )
(20)

and for 1 /A, the replacement is the same but with £ = 0. To
extract the discontinuity of the higher power terms 1/A% 5,

we can firstly transform it into the form of a derivative on the
1/A» 3, which reads

. n—1
Disc |:/ L(.,_)] _ (=27 <i>
Al n—1! \ e

x ja (p - @+uenP—) 0| _ . @

where (- - -) denotes all the terms except 1/ A’2”3 in the inte-
grand of Eq. (18). Finally, we obtain the correlation function
at the quark—gluon level by the dispersion relation

ImIPE (s, ¢2)

, 22
s —p?—ie (22)

1 o0
no%(p. q) = —/ ds
T Jo

which should be equal to that given in Eq. (4): TT}} = MQPE,
According to the quark—hadron duality, the dispersion inte-
gral in the region 55" < s < oo on the two sides are can-
celed, where 57" = 4m?% is the threshold of K K, which is
the lowest two-meson state above the wn state. After Borel
transformation, one arrives at the sum rules equation. For
Féo) (s, q2) it reads as

T — —
: ,/AO ds e_S/Mzi)L”(S) x BoFZ* (S)F(O) (S ‘12) 24/ Z
1672 (Mg +my)? s ™ 0 ' AB
1 5 \"
2
= 1) (mhag)
n=0
o0
X [ dw © (a), 0, sgn, M2,q2,m2> 12(") (w,qz) ‘
0 Q=m?
3 n
1 , 0
+fBr;a (mgﬁ)
o0
x/ dods © (0.6,57" M2 % @) 11 (0.6.%. @) |__ .
0 ‘ =m?
(23)

where
C) (a), g, sgn, M2, 42, 52) = (Z@.q% /M (Z(a), £,q°, Q))

x0 (53" - T@.5.4% D). (24)

For F,(O) (s, ¢%), the sum rules equation is similar, it reads

BoF},(s)

1 ,Sg” s e—S/M2 /)‘JTW(S)
S

1672 Jomy-m, 2
1 2p -
x (F,“”(s,cﬂ)2 - RV, qH L q2>
V4 rpq
1 3 \"
. 2
= 113 (m55)

o0
/ dw ® (a),O, sg”,Mz,qz,mz) Jz(”)(a),qz)‘
0 Q=m?
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2 9 \"
—m?2 =
+an§n! (mBasz>
o0
x / dods © (0, &, 57", M2, ¢%, Q) I (0, &, ¢% Q) ‘
0
(25)
The explicit expression for the 12("3) and 12("3) functions are
given in Appendix C.

On the other hand, for the D° decay the treatment is more
simple because there is only one two-particle LCDA ¢p and
no v - x terms appear in the denominator. The sum rule equa-
tions for the D° decay are

1 /~.an ds ei_y/Mz /)‘«nn(s)
(

2
167 M +m'i)2 N

2./g2
0) 2 q
X BOF:V}(S)FO (S,q )ﬁ
_ Ydu a0 o2 .
=/ —© (u, 55", M?, g%, m*) (m — iimp)pp (u)
0
T
1 /“0 ds eiS/Mz Ay (s)
16772 (m7T+m,])2 N

1 2p -
0 0 pP-q
X (F,( )(s, qz)—2 — Fé ) (s, qz) )

Va2 Visg?

1
du
= fD/O — @ (.53", M?, g%, m?) (m + ump)ep(u) .

BoFy,(s)

(26)
where u = 1 — u and
e (u, sg", M?, 42, m2>
Ay
i
x@(sém—um%—M)- 27)

From the sum rules Egs. (25) and (26), it can be concluded
that the convolution on the left hand side must be real. This
means that the strong phase of the transition form factor and
the w7 scalar form factor must cancel each other:

Im [ F7, () FS 5,97 ] = 0. (28)

"t

This result is exactly the one deduced from the Watson—
Migdal theorem [34,35]. We thus can conclude that since
the 71 system is decoupled from the leptons, the phase mea-
sured in 77 elastic scattering and the transition matrix ele-
ment B — 77 must be equal.

2.3 Comparison with the LCSR in the narrow-width limit

In the narrow-width limit, instead of the 1 — 2 process
as given in Eq. (8), one only considers the I — 1 process

@ Springer

Q=m?’

B% — a((980) which is parameterized as

—i {ao(P)liy, ysb1Bq + p)) = Fr(qD)p + F-(g))q,.
29)

Using this parameterization, one obtains the sum rules equa-
tions. For example, the sum rule for F (¢?) is

7'”50/”12

Mag fae Fi(g?)

n

1 SO
=— /O ds e M IO (s, ¢2) . (30)

The sum rule Eq. (25) must be consistent with the above
one in the narrow-width limit. To realize this matching, one
should find a suitable parameterization for Fég) (s, ¢%), which
must have an explicit dependence on the ag decay width F;‘(’)t
so that it has a definite limit when [';?" — 0. Following
the method from Refs. [38,39] and with the constraint of
Eq. (28), instead of directly using the numerical result in

Fig. 1 one can temporarily assume the form of Fg;’ (s)* as

gaonnmaofao
mg, = +iy/sTay(s)

where g7, 1s the strong coupling of the ag to 7y, and fy,
is the decay constant of the ap:

(Oldulag) = maq fay, (32)

and

o i%qg (S)’ (31)

F¥(s) =

2 /
gaonn )"ﬂn(s)

on 32 0 (s — (my + mn)Z)

3
rot May )‘ﬂn(s) 2
Ml /—Mn(m%o)e (s = One +mp?) 33

is the decay width of the agp — mn with the mass squared
of the ag being a variable s. Accordingly, to satisfy Eq. (28),
Féo) (s, ¢*) must have an inverse complex phase, which reads

2y q2 _ gaonnF-i-(qz)
VA m2 =5 —iy/sTy(s)

Thus using Eq. (28) we can obtain the phase of F(;O[) (s.¢%
as

Fao (s) =

FéO) (S, q2) ei¢“0 (S‘) . (34)

®ag(s) = Szy(s) — arctan |:«/§2F—a_0(;)i| , (35)
ag

where 8, (s) is the phase of Fy,(s), which is taken from
Fig. 1. After inserting Eqgs. (31) and (34) into Eq. (25), and
taking the narrow-width limit of ;o' — 0, one arrives at
exactly the same sum rule as Eq. (30). It should be men-
tioned that for Eq. (31) one should in principle multiply it by
an additional factor on the right-hand-side to make the nor-
malization consistent with that given in Fig. 1. However, this
factor can be absorbed by Fi(qz) in Eq. (34) so we neglect
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Fig. 3 The phase of the B%/D° — sy form factors, with the blue
band showing the uncertainty from the Borel parameter and the LECs
of ChPT

it here. Similarly, the FI(O) (s, ¢*) can be parameterized by
F_(g%) as

1 2p -
O (g 22 — — FO (5. 4%) 224
F| (s,q) -k (S7q)
J? Bq*
2
__ Bam @) g (36)

mgo -5 — i\/EFaO(s)

Finally, inserting Egs. (34) and (36) into the sum rules equa-
tions: Egs. (25) and the one for three-body LCDA contribu-
tion, one can extract the F (qz).

Note that since the form factors obtained here are only
applicable to the small ¢ region due to the light-cone OPE,
one should extent their applicability to the physical region
with larger ¢2. In Eq. (34) the dependence on s and ¢ are
factorized, which enables us to find an appropriate param-
eterization for F.(g?) to realize the extension of g2. This
factorization approach can also be used for the D° decay.

3 Numerical results

The parameters used are: m, = 0.139 GeV, mg =
0.496 GeV, my, = 0.98 GeV, mp = 5.28 GeV, mp =
1.87 GeV, m, = 22 MeV, myq = 4.7 MeV [52];
fB = 0.207 GeV [53], fp = 0.207 GeV [50]; gayry =
May/8mgy = 3.307 GeV [54] with g, = 0.453 [55];
Bp = 1.7 GeV [49]. According to Eq. (35), we can obtain
the phase of the form factors. The numerical result for ¢, (s)
is shown in Fig. 3, which is nonzero above the 7 threshold.
The blue band shows the uncertainty from the Borel param-
eter and the LECs of ChPT.

In the calculation of F.(g?), instead of infinity the upper
limits of the w and £ integrations are chosen as w + & < 2wy
with wg = (2/3)A [56], where A = mp — my, = 0.45 GeV

in the heavy quark limit [57]. It can be found that numeri-
cally the different integration upper limits 2wq and oo lead to
almost the same result. The reason is that at large energies,
the original LCDAs: ¢, ¥y 4 are highly suppressed by their
exponential behavior, while the contributions from the newly
defined LCDAs such as @, X;l), Yf(ll)... are cut off by the
theta functions of Eq. (24). The Borel parameter M is taken
so that the fraction of the pole contribution is around 40%:

T

S[h]7 2
/ ds e=5/M Iml'IgPE (s, q2>/
0
© 2
/ ds e~ ImIO (s, g%) ~ 40% . (37)
0

Note that this fraction is an empirical value, practically one
should allow a finite region for the choice of the Borel param-
eter. Accordingly, we choose the region of the Borel param-
eters as 1.0 GeV < M < 1.2 GeV for the BY decay and
1.2 GeV < M < 1.4 GeV for the D decay, where the cen-
ter value of each region corresponds to the empirical fraction.
The numerical result will depend on the Borel parameter, and
the regions for the Borel parameters are used to estimate the
error of the numerical results.

To extend the applicability of F(g?) to the whole phys-
ical region for ¢, one should use a suitable parameteriza-
tion for F(g?) to realize the extension. One of the popular
parameterization is the z-series expansion [58]:

Fi(g) = f% (1052 () +ect?(4?)]. 6®)
Mg

t

where

() =2() 0. <(¢)
_ V-V —h
Vir =@+ Vi =1

with ty = (mp, £my)? and to = t4(1 — T —1_/13).
The fitting regions are chosen as 0 GeV? < ¢? < 2 GeV?

0 0
for FiB T 0 GeV? < g% < 0.7 GeV? for Ff % and

0 GeV? < ¢% < 0.3 GeV? for FP°=% The fit results are
listed in Table 1, and the corresponding curves are shown in
Figs. 4 and 5.

Note that in Ref. [58] mg; is fixed as the pole mass, which
is equal to mp or mp for the B or D decays, respectively.
Here, we try to choose it as a free parameter for the fit to
improve the fit result. However, since the phase space of g2
for the B decay is very large, the fitted mass pole m%it may
be smaller than the upper limit of ¢2, so that it will cause a
singularity during the phase space integration. Thus we just
fix it as m p in the fitting. On the other hand, we find that for
the D° form factors, the fitted »_ and c4+ are extremely large.
A possible reason is that the D° form factors are insensitive to

(39)

@ Springer
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Table 1 Fit results for the F (qz)

Form factors FL(0) Mt by ct
FB—a 1.824+0.1 my —4.1840.02 16.29 + 0.04
pB—a 0.09 + 0.004 my —0.7740.04 822408
FP’=w 1.87 4+ 0.07 1.3340.03 ~19.1740.8 0
FPi—a ~0.53+0.06 mp 0 0
F2%(q?) FB>2(¢?)
12 o ] T ]
| / g 4 |
10 - 7 V4
[ ,/ 03+ g
L 4
8 ,'l' ,,/
: /,/ ”,/’
6 ’,’ 102 PP 4
’1’ ‘,a’
P ,—"
4 - ,—”’ b L _—_—"—‘
[ e LR —
2| —— ]
0 :‘ . ) - 0.0 I I 1 3

q° [GeV?]

10

q° [GeV?]

Fig. 4 F. (qz) (left) and F_ (qz) (right) for the BO decay. The blue bands reflect the uncertainty from the Borel parameter and the LECs of ChPT

FD—)ao ( q2)

0.2 0.4 0.6

q° [GeV?]

-0.50 |
1 -055
—0.607
| oes
] -0.707

-0.75

F2(q’)

0.0

0.2 0.4 0.6 0.8

q [GeV?]

Fig. 5 F.(q?) (left) and F_(g?) (right) for the D° decay. The red bands reflect the uncertainty from the Borel parameter and the LECs of ChPT

the terms proportional to b_¢ (q2) and 122 (qz) in Eq. (38).
0
Therefore, for the fit of Ff 9 we fix cx = 0, while for
0

the fit of F2 7% we fix by = co = 0 and mg, = mp.

_ Finally, we calculate the decay branching fraction of
B%/D% — (ap(980) — ¥ n)lv. The expression of the dif-
ferential decay width reads:

d’r (].‘_ZO/D0 — nty l:Fv)
dg?dk®dcost,

@ Springer

2G| Vbujeal*(q® = mP)?/Ap Doy
32(2m)my, pkq?

0(2 2\*>..2 ml2 0(72 2
X Fo(k,q> sm9n+—2(Ft (k,q)
q

—F(()) (kz, qz) cos@n>2:| ,

(40)
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where m; is the lepton mass and it is chosen as zero for e and
. The numerical result of the total decay widths are

BD® - 7 nlTv) = (1.36 £0.21) x 1074,
BB - 7ty i v) = (0.60 £0.07) x 1074, (41)

We note that the branching fraction obtained above for the
DY decay is consistent with that measured by the BESIII
Collaboration [30]:

B (DO Sy e+v) = (1.3340.09) x 107, (42)

This agreement is quite amazing. It is known that the D
meson LCDA are not developed as well as those of the B
meson. One may expect that the result of D decay con-
tains larger uncertainties. However, although the error of the
DY decay branching fraction is one order larger than that
of the B® decay, it is still small enough to give consistency
with the experimental result. Furthermore, we find that in
the numerical calculation for the B decay, the contribution
from the 3-particle LCDA is two orders of magnitude smaller
than the one from the 2-particle LCDA. Therefore we also
do not expect a sizeable contribution from such corrections
in the D meson case. On the other hand, up to now there is
no experimental measurement on the branching fraction for
B — (ap(980) — T n)e v, so our result can be tested by
future experiments.

4 Conclusions

In this work, we have analyzed the semi-leptonic decays
B/ DY — (ap(980)* — m*n)IFv within light-cone sum
rules. In the calculation at the quark—gluon level, we used the
two- and three-body LCDAs of the B meson for the BY decay
and the only available two-body LCDA of the D meson for
the DY decay. In the calculation at the hadron level, to include
the finite-width effect of the a(980), we use a scalar form
factor to describe the final-state interaction between in the
1y system, which was previously calculated in the frame-
work of unitarized Chiral Perturbation Theory. The resulting
value of the decay branching fraction of the D° decay shows
an amazing agreement with the one measured by the BESIII
Collaboration, while the branching fraction of the BY decay
can be tested in future experiments.
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Appendix A: LCDAs of B and D mesons

In this appendix we list the explicit expressions for the
LCDAs of the B meson [48]. The two-particle LCDAs are

w
(@) = — e/,
“0

- 1 o/
¢p (@) = " e

252 2
_w ) <£>+l <£> @l (Al)
9wy 2] 2 \wo

where 2 A% =2 A% + )\%{ and )»%1 = 2)»% The three-particle
LCDAs are classified by different twists:

O3(w, §) = Ya(w,§) — Yy (w,§),
Sy, &) =Va(, &) + ¥y (w,8),
Vy(w,§) = Ya(w,§) + Xa(w, §),
Uy(w, §) = Wy (@, §) — Xa(w, §),
Os5(w, §) = Va(w,8) + Yy (w,§)
+2 [Ya = Y4+ W] (0,8,
Us(w, &) = —Va(w,8) + Xa(@,8) —2Ya(w, §),
Us(w,£) = =Wy (w,§) — Xa(w,§) +2Va(w, ),
Dp(w,§) = Va(w,§) — Yy (o, §)

42 [Ya+Ya+W—-2Z](0§). (A2)

Each LCDA with definite twist has the explicit form of:

A2 — )2
q>3(a)7 é:) — E 5 H (,()52 e—(CU-FS)/u)O’
6wy

@ Springer
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2 2
dy(w, &) = )\56;4%” £2 g (@+8)/ w0
w
0
12
Va(,§) = S ofe @O,
0
i} e
Wa(,§) = g wgen @O,
0
2 2
P5(w, §) = —AE;;\H we @O/,
@y
52
Us(w, &) = — E3 é;e*(erE)/wo’
3wy
; A2
Us(w, &) = — H3 é;e—(w-l-é)/wo,
3wy
AL — A2
P6(w, §) = —L—1 gm0, (A3)
3w

Appendix B: Vanishing of the boundary terms at @ = oo

Here we give a detailed explanation for the vanishing of the
boundary terms at w = co when deriving Eq. (15). For exam-
ple, consider the integration

/d4x eip-x fmdw e—iwv-x I/f(w)
0

(v-x)?
where F(x) is a certain function depending on x* and inde-
pendent of w. Since ¥ (w) = (d /dw)t/f(l)(w), after integra-
tion by part, the above equation becomes
w=0Q

. . M
/d4x PUZ e*lwvxw (w) (x)

(v-x)2 w=0

. 00 . M
+i / d*x e'P* / dw e_’w”'xMF(x).
0 VX

Using v D (w) = (d/dw)y® (w) and integration by part for
the second term, we have

F(x), (B1)

(B2)

/d4x P X iV AO) F(x))‘“:“
(v-x)? =0
2 =
+i/d4x elPx e—in‘wa(x)‘w *
VX

w=

o0
+ 2 / d*x &P /0 dw e YYD (W)F(x).  (B3)

According to the definition of " (w) and v @ (w), the
boundary terms at @ = 0 vanish trivially. The only non-
trivial problem is whether the boundary terms at @ = o0
also vanish. Since the first two terms of the above equation
are similar, we take the first term as an example. We define
pll = pt—(p-v)vk x) =v-xand x| = x* —xv/, then

@ Springer

this term becomes

. . . ()]
/d%ﬂ_e’“'“/dx”e_’wx”elp'”x” vy @ 2((1)) F(xy,x1)
gl “=
(B4)

Note that w(l)(oo) = fooo dty(7) is finite. For the integra-
tion of dx, consider two very nearby values of x|: x = 19
and x; = 79 + 6 with § = m/w < 1, the corresponding
integrands are

1
J—ion ¥(00)
%
Ciwn V() iprrs
_1)e—iomn PV E 48 x)).
(=Detm s (70 +8,x1)
Since § is extremely small when @ approaches infinity, the
value of the above two integrands are almost the same except
the difference of sign. Thus during the integration of x| the
contributions from each pairs of the integrands like the two
above will cancel with each other, and the boundary term at
w = 00 is also zero.

ePVOF (79, x1), and

(B5)

Appendix C: I, J functions in the OPE calculation

The explicit expressions for the 7, J functions in the OPE
calculation are

)

=40V (w) — ¢4 (@) (m — mp + ),
17 (@)

=40 () - ¢4 (@) (m + w),
12(1)(0),612! Q)

b 20— %) |

=2q,<1>(w)<1_g> mo_Zo @ og) )
mp

L@, 4% Q)

- 5 ST
:2@(1)(a))<l—i) ﬁ_%’JrM ,
mp

1
I, & ¢% Q)

1 _
== [m% (3 (m(\IIA +wy) — X0
mp

—x{) a7 +ay (")

+12(1 = 20)WD + (4u — 3)w (V4 — Wy)
ulhu = 3)EWa = Wy) + 6uX | — 24uy (")
+my (1 —4u)Wa — (14 2u)Wy))

+2mp ((u—1) (¢ — Z¢) (¥a — By)
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+3ulug + @)t (4w - X +4y("))
—2u(w + u&)(g® — Te)(Wa — V)],
I (. 6.4% Q)

= —1 [m2 (3 (m(‘lh; + Wy) — x®
mt LB A
B

(1) (1) (1)

—x{ ar) +ay ()
+12(1 = 20)W 4+ Qu — 3w (¥, — Wy)
HuQu — BEW, — Wy) + 6ux) — 24uYg‘))
—2my(u—1)(¥a — Wy)
+2mp ((u—1) (g% — Te) (Wy — Wy)
+3ulu + o) (4D - xP + 4y "))
—2u(w + ug) (g% — Ze) (Wa — Wy)],

LY (0.6.4°, Q)

1 _
—G(mg —&u —w) [m (m32 (—6W(1) — 2X1(41)
mpg

x4 127 - 7))
—12mp (WO —42P) + (2 - *) (2%} - x{"))
b (bax )~ 2% - x)
+2mp? (Gu+ o) (—2ux) +2w D + X
+x{) +470 +2v ) — 6w +362?)
+mp <q2 (—4MXE41) + 2}_(;]) + XS))
+ % (6 = DWD —dux () + 24uy () + 2%
+x{ =6 (27 +v{")) + 12w u + )
) (25 (6w<2> — (Eu + o) ((12u —Hw®
=2 (ux + 7Y + 120 — 0y + X)) - g
x ((gu +w) (—2uxg” +w®—x(®
w270 + v ") +6w?@))].
I (@.6,4% Q)
= ml%(mg —&u —w) [m32 (m(2)_(f41) — XE‘I))
+ 200+ ug) (WO - X
+274") + 12w ?)
+2mp (6 (4m2® = mW® + ug W + oW )
+ % ((12u -3 (W(l) + Yj,‘)) + (1 —4x —e67)

+2%))

—q? (m (2% = x{) + 20+ ug) (WO - X
w270 +v") + 12w ?)
+ % (m (2% - x{)
=2+ ug) (120 = 1) (WD + ¥ ) — 4ux P 4 X
—27) + 12w@)] |

LY @.5.4° Q)

12
= o tut —mp)? [mB (q% — 26) B w®
B

+myze (W - 62?)
+ mm%3 ((Eg + q2 — m%) w® — 6252(2))
2
+(¢* = =) (@ +ue)w?®
+ 4y (@ +u§)Z® — mh (o + ug) ((¢7 + 3g) W

+2(247 - 2¢) 2?)] .

I (.6.4% Q)
12
= 10 (w4 ut& — mB)2 [(mBZg (q2 — X — m%) w®
B

+ 2mm%; (W(Q) — 3Z(2))
+my(@+ue) WP + (0 +ug) (> — Zg)* W
—2m%(a) + ué) (qZW(z) + 252(2))] , (C1)

where £ = Z(w, 0, ¢%, Q) and ¢ = Z(w, &, ¢%, Q).
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