000902628 001__ 902628
000902628 005__ 20240610121017.0
000902628 0247_ $$2doi$$a10.1140/epja/s10050-021-00482-z
000902628 0247_ $$2ISSN$$a1434-6001
000902628 0247_ $$2ISSN$$a1434-601X
000902628 0247_ $$2Handle$$a2128/29102
000902628 0247_ $$2altmetric$$aaltmetric:102722156
000902628 0247_ $$2WOS$$aWOS:000648484800001
000902628 037__ $$aFZJ-2021-04423
000902628 082__ $$a530
000902628 1001_ $$0P:(DE-HGF)0$$aBroocks, C.$$b0
000902628 245__ $$ag-Factor and static quadrupole moment of $^{135}$Pr, $^{105}$Pd, and $^{187}$Au in wobbling motion
000902628 260__ $$aHeidelberg$$bSpringer$$c2021
000902628 3367_ $$2DRIVER$$aarticle
000902628 3367_ $$2DataCite$$aOutput Types/Journal article
000902628 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637662133_28498
000902628 3367_ $$2BibTeX$$aARTICLE
000902628 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902628 3367_ $$00$$2EndNote$$aJournal Article
000902628 520__ $$aThe g-factor and static quadrupole moment of the nuclides 135Pr, 105Pd, and 187Au in the wobbling motion are investigated in the particle-rotor model as functions of the total spin I. The g-factor of 105Pd increases with increasing I, due to the negative gyromagnetic factor of a valence-neutron. This behavior is in contrast to the decreasing g-factor of the other two nuclides, 135Pr and 187Au, which feature a valence-proton. The static quadrupole moment Q depends on all three expectation values of the total angular momentum. It is smaller in the yrast band than in the wobbling band for the transverse wobblers 135Pr and 105Pd, while larger for the longitudinal wobbler 187Au.
000902628 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000902628 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1
000902628 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902628 7001_ $$0P:(DE-HGF)0$$aChen, Q. B.$$b1
000902628 7001_ $$0P:(DE-HGF)0$$aKaiser, N.$$b2
000902628 7001_ $$0P:(DE-Juel1)131252$$aMeißner, Ulf-G.$$b3
000902628 773__ $$0PERI:(DE-600)1459066-9$$a10.1140/epja/s10050-021-00482-z$$gVol. 57, no. 5, p. 161$$n5$$p161$$tThe European physical journal / A$$v57$$x1434-6001$$y2021
000902628 8564_ $$uhttps://juser.fz-juelich.de/record/902628/files/Broocks2021_Article_G-FactorAndStaticQuadrupoleMom.pdf$$yRestricted
000902628 8564_ $$uhttps://juser.fz-juelich.de/record/902628/files/2103.13174.pdf$$yOpenAccess
000902628 909CO $$ooai:juser.fz-juelich.de:902628$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902628 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
000902628 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
000902628 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich$$b3$$kFZJ
000902628 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000902628 9141_ $$y2021
000902628 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000902628 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000902628 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000902628 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J A : 2019$$d2021-01-29
000902628 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000902628 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-29$$wger
000902628 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000902628 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000902628 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902628 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000902628 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000902628 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000902628 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000902628 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000902628 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000902628 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1
000902628 9801_ $$aFullTexts
000902628 980__ $$ajournal
000902628 980__ $$aVDB
000902628 980__ $$aUNRESTRICTED
000902628 980__ $$aI:(DE-Juel1)IAS-4-20090406
000902628 980__ $$aI:(DE-Juel1)IKP-3-20111104
000902628 981__ $$aI:(DE-Juel1)IAS-4-20090406