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We report a high-precision calculation of the Standard Model electroweak radiative corrections in the
K — mweTv(y) decay as a part of the combined theory effort to understand the existing anomaly in
the determinations of V5. Our new analysis features a chiral resummation of the large infrared-singular
terms in the radiative corrections and a well-under-control strong interaction uncertainty based on the
most recent lattice QCD inputs. While being consistent with the current state-of-the-art results obtained
from chiral perturbation theory, we reduce the existing theory uncertainty from 10~3 to 10~. Our result

suggests that the Standard Model electroweak effects cannot account for the V5 anomaly.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

An interesting anomaly has recently been observed in Vi,
which is a top-row element of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix [1,2] in the Standard Model (SM) of particle physics.
The measured values of this matrix element stem from two differ-
ent channels of kaon decay, K — uv(y) (Ky,2) and K — wltv(y)
(Kj3), and show a disagreement at the ~ 3o level [3]:

[Vus| = 0.2252(5) (K.2) ,
=0.2231(7) (Kp), (1)

which may hint to the existence of physics beyond the Standard
Model (BSM). The value obtained from the K3 decay is particu-
larly interesting because it also leads to a violation of the top-row
CKM unitarity at (3 — 5)o upon combining with the most recent
updates of V4 [4-7], depending on the amount of nuclear uncer-
tainties assigned to the latter [8,9]. However, despite of an active
discussion about the possible BSM origin of the K;,-K3 discrep-
ancy [10-18], the current significance level is not yet sufficient to
claim a discovery. One of the main obstacles is the large hadronic
uncertainty in the electroweak radiative corrections (EWRC), which
are the focus of this work.
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Among the many studies of the EWRC in K3 [19-29], the stan-
dard inputs in global analyses [30,31] are based on chiral per-
turbation theory (ChPT) which is the low-energy effective field
theory of Quantum Chromodynamics (QCD). Within this frame-
work, the “short-distance” electroweak corrections are isolated as
a constant factor, while the “long-distance” electromagnetic cor-
rections are calculated up to O(e?p?) [32-34], with e the elec-
tric charge and p a small momentum/meson mass. The estimated
theory uncertainties in these calculations are of the order 10~3,
and originate from: (1) the neglected contributions at O(e?p*),
and (2) the contributions from non-perturbative QCD at the chi-
ral symmetry breaking scale A, ~ 47 F; that exhibit themselves
as the poorly-constrained low-energy constants (LECs) in the the-
ory [35,36]. These natural limitations prohibit further improve-
ments of the precision level within the original framework.

In this letter we report a new calculation of the EWRC in K3.
Based on a newly-proposed computational framework [37,38] that
hybridizes the classical approach by Sirlin [39] and modern ChPT,
we effectively resum the numerically largest terms in the EWRC
to all orders in the chiral expansion and significantly reduce the
O(e?p*) uncertainty. Also, we utilize the high-precision lattice
QCD calculations of the forward axial y W-box diagrams [40,41] to
constrain the physics from the non-perturbative QCD. With these
improvements, we reduce the theory uncertainty in the EWRC to
Kes3 to an unprecedented level of 10~4. We will outline here the
most important steps that lead to the final results, while the full
detail of the calculation will appear in a longer paper [42].
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Fig. 1. Non-trivial loop diagrams in the K.3 EWRC. A factor M2, /(M%, — q?) is at-

tached to the propagator of y_.

Our primary goal is to study the fractional correction to the K3
decay rate due to EWRC:

Skes = 8T Kes / (TKes ) ree (2)

up to the precision level of 10~4. The denominator in Eq. (2)
comes from the tree-level amplitude for K (p)— 7 (p")eT (pe)v(py):

Mo = —v2Grily yave F* (', D), 3)

where G is the Fermi constant, F*(p’, p) = V[ f+ (O (p + p)* +
f-@®)(p —p")*] is the charged weak matrix element and f4(t) are
the charged weak form factors, with t = (p — p’)%. We restrict our-
selves to K3 for which the contribution from f_ to the decay rate
is suppressed by m2/M% ~ 10~% and can be neglected.

The full EWRC includes both the virtual corrections and the
bremsstrahlung contributions, and we shall start with the former.

A generic one-loop correction to the decay amplitude reads:

8Myir = —V2Grily yaverl” (4)

where the loop integrals are contained in I*. It results in a shift
of the form factors: fi — fi 4+ &f+, except that § f1 can also de-
pend on s = (p’ 4 pe)? or u = (p — pe)?. Again, in K3 only & f, is
relevant.

We follow the categorization of the different components of the
O(Gra) virtual corrections in Refs. [37,38], with « = % /4. First,
there are pieces in which the loop integrals are independent of
the hadron properties and can be computed analytically. They are
contained in Egs. (2.4) and (2.13) in Ref. [38], which combine to
give:

o
8 = —1——— —_— — _— = = —
S fh {271[“,112 4nm§+2nM2 o 50
1
+§5SSD}f+(t) : (5)

where d; = —0.083 and JSCE)D =0.0010(3) come from perturbative
QCD corrections and the resummation of large QED logarithms,
respectively. Notice also that we have introduced a small photon
mass M, to regularize the infrared (IR)-divergence.

The remaining loop diagrams in the EWRC, in which the en-
tire dependence on hadronic structure is contained, are depicted
in Fig. 1. They depend on the following quantities:

T = f d*xe'"* (70 (p)| T (Jn 0 T35 (O} K ()

M= / d*xe!?* (7 (p")| T{ b3 - JT, (0} IK(p)) (6)

which are both functions of the momenta {¢’,p’,p}. In par-
ticular, we may split the tensor TH*' into two pieces: THY =
(T*¥),, + (T*"), that contain the vector and axial component of
the charged weak current, respectively. With these, the first rele-
vant integral can be written as:
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Fig. 2. Pole (left, middle) and seagull diagrams.

A _ e2 d4q/ 1
@)% [(pe — a2 —m2] [a2 — M3 ]

2 a'a* .
X{ qge_quz Tl +2pep T — (p — p)) T + il
%

_iE/’Lva)\,q:I (T;,LU)V} , (7)

where the first two lines come from Eq. (2.13) of Ref. [38], and the
third line is a part of SMJ’}W in Eq. (2.10) of the same paper.

The operator product expansion (OPE) shows that the |q'| > A
region does not contribute to the integral I}, therefore only the
low-energy expressions of T#V and I'* are needed. To this end,
we find it useful to split them into the “pole” and “seagull” terms
respectively, as depicted in Fig. 2:

ny _ pMuv Hv n _
T - Tpole + TSE , M= l_‘pole

+ Ty . (8)
Furthermore, we can obtain the so-called “convection term” by
setting ¢’ — 0 in both the electromagnetic form factor and the
charged weak vertex of the pole term [43]. It represents the mini-
mal expression that satisfies the exact electromagnetic Ward iden-
tity, and thus gives the full IR-divergent structures in the loop
integrals.

The seagull term receives contributions from resonances and
the many-particle continuum. An estimate operating with low-
lying resonances [44-46] suggests that its contribution to §,, is
at most 10~4. Note that t-channel exchanges that still retain some
sensitivity to the long-range effects do not contribute to Eq. (7). To
stay on the conservative side, we assign to it a generic uncertainty
of 2 x 1074, Therefore, § f; derived from I} is dominated by the
pole contribution which is fully determined by the K and 7w elec-
tromagnetic and charged weak form factors. The result splits into
two pieces:

@ f =G fn+ G 9)
where (6 f4);; is a model-independent IR-divergent piece. The IR-
finite piece, (8f+)g“, on the other hand, is evaluated numerically
by adopting a monopole parameterization of the hadronic form
factors [47-49]. Notice that the integral Iél only probes the region
q ~pe~p—p ~ Mg — My, where different parameterizations
of the form factors are practically indistinguishable. In particular,
we find that the main source of the uncertainty is the K+ mean-
square charge radius and the experimental uncertainty thereof,
(r7) = 0.34(5) fm? [47].
The second relevant integral is:

o, [ d*q M, €M (Tyuw) 5
@m)* M%, — q” [(pe — q))> —mZ]q?

which picks up the remaining part of SM)",‘W in Eq. (2.10) of
Ref. [38]. It is IR-finite, but probes the physics from |q’| =0 all the
way up to |q’| ~ Mw. A significant amount of theoretical uncer-
tainty thus resides in the region |q'| ~ A, where non-perturbative
QCD takes place, and has been an unsettled issue for decades. The
situation is changed following the recent lattice QCD calculations
of the so-called “forward axial y W-box”:

Iy =ie (10)
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ie? d¢ M3,
2M2 ) 2m)t M2, —q?

€'l pp
(q/2)2

Oy iy (@i, &5, M) =

Td,(d. p. p)
X/"VT (11)
F1 0

where T;{v is just T, except that the initial and final states are

now {¢j, ¢} with p?> = M? = M% = M?, and Fi]_t(O) is the form

factor ff(O) multiplied by the appropriate CKM matrix element.
Following the existing literature, we split it into two pieces:

Oy (@i, &5, M) =0y (7 + Oy (i, ¢5, M) (12)

which come from the loop integral at Q2 = —q? > Q2 and
Q2 < Q2 respectively, where Q2, =2 GeV? is a scale above
which perturbative QCD works well. The “>" term is flavor- and

mass-independent, and was calculated to O(a?): Dj‘f(}f =2.16 x

103 [40]. In the meantime, direct lattice calculations of the “<”
term were performed in two channels [40,41]:

Oyt 7% Ma) = 0.67(3)1q x 1072
OV AT (KO, ™, Myr) = 0.28(@)jq x 107 (13)

from which we can also obtain Dj‘ﬁ"j‘f(l(ﬂ 70 M) = 1.06(7)jat X

10~3 through a ChPT matching [38].

The only difference between the integrals in Eq. (10) and (11)
is the non-forward (NF) kinematics in the former (i.e. p # p’
and pe # 0), which only affect the integral in the Q2 < chut re-
gion. Therefore one could similarly split (8 f;)q into two pieces:
6f+)m =@ f)x + (8 f1)m, where the “>" piece matches trivially
to the forward axial y W-box:

Gf% =0y f+©) . (14)

On the other hand, the matching between the “<” components
is not exact due to the NF effects. We characterize the latter by
an energy scale E that could be either Mg — My, (s — M2)1/2 or
(u — M2)1/2, The matching then reads:

6f05 = o« x Mo +0 (B2/a2) £, (15)

where O(E?/ Ai) represents the NF corrections. Numerically, since
E < Mg, we may multiply the right-hand side of Eq. (15) by
Mf(/Af( as a conservative estimation of the NF uncertainty.

The last virtual correction is the so-called “three-point function”
contribution to the charged weak form factors, which was derived
within ChPT to O(e2p?) in Ref. [37]. However, it contains an IR-
divergent piece that comes from the convection term contribution,
and can be resummed to all orders in the chiral expansion by sim-
ply adding back the charged weak form factors. This leads to the
following partially-resummed ChPT expression:

8f+3= G+ {(85+.3)gme + 0P} | (16)

where the IR-divergent piece (8 f4 )y is exact, i.e. resummed to all
orders in ChPT. It combines with (8 f); in Eq. (9) to give:

o 2 _ Mim
Re O fuwm = 4~ |:—E tanh™! g; lﬂ( I\;Iz e)
i v

+1 M’; > f+(®) (17)
n— —- )

M2 2|7

where M; is the mass of the charged meson (K™ in K;g and w~
in Kgg) and g; is the speed of the positron in the rest frame of
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Fig. 3. Bremsstrahlung diagrams.

the charged meson. Meanwhile, the IR-finite pieces, (8f+,3)§2np2,

are given by the terms in Egs. (8.3) and (8.5) of Ref. [37] that are
not attached to the factor In(M?/M3) — 5/2, and are subject to
O(e?p*) corrections.

Next we switch to the bremsstrahlung contributions, as de-
picted in Fig. 3. Its amplitude is given by:

Pe-&* kg*
T F
Pe'k+2pe'k Vel fu

+iv2Greiiy Y vere"* Ty (k; p', p) (18)

Mprems = —\/EGFeﬂULVM {

in which the tensor T#Y appears again, except that now it deals
with an on-shell photon momentum k whose size is restricted
by phase space. Similar to §f 3, we find that the most efficient
way to calculate the bremsstrahlung contributions is to adopt a
partially-resummed ChPT expression for TH":

T = Tl + (T4 = Thi) o + O™ | | (19)

where the full convection term T, is explicitly singled out, while
the remaining terms in the curly bracket are expanded to O(p2).
Consequently, one can split Mpems into two separately gauge-
invariant pieces:

Mprems = Ma + M3p , (20)

where the terms in the curly bracket of Eq. (19) reside in Mp.
The contribution to the decay rate from |Ma|? contains the full
IR-divergent structure (which cancels with the virtual corrections),
is numerically the largest and does not associate to any chiral ex-
pansion uncertainty. The term 29e {Mj‘MB} + |[Mg|?, on the other
hand, is subject to O(e?p*) corrections. We find that its contri-
bution to 8k, is < 1073, so the associated chiral expansion un-
certainty, which is obtained by multiplying the central value with
M2 /A2, is of the order 1074,

With the above, we have calculated all EWRC to 10~* and may
compare with existing results. The standard parameterization of
the fully-inclusive K3 decay rate reads [3]:

GZ |V |2M5 CZ 0 0
Ko = gy SEWl T OFPIE ()
x (1485 + 8&772)) - (21)

among which Sgw = 1.0232(3) describes the short-distance EWRC
[50] (the uncertainty comes from SSBD [51]) and 8561 describes the
long-distance electromagnetic corrections respectively. We also re-
alize that in the existing ChPT treatment a residual component
of the electromagnetic corrections, which corresponds exactly to
(8f+,3)fznp2 in our language, is redistributed into I;?e) (A;) and 85&2)
that describe the t-dependence of the charged weak form factors
and the isospin breaking correction, respectively [32-34]. There-
fore, the correspondence between 5{:(,6[ in the ChPT calculation and
8k,; in our approach reads:

558 = (Bks ) gy — (SEw — 1) — (Sk5) " - (22)
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Table 1
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Summary of various contributions to dk,, (except that from (5f+,3)§2"p2, see the discussions after Eq. (21)) in

units of 1072,

from (8f+)g‘l’ from (8 f1)

from (8 f4)qqm and [Ma?

from 29%e {M3 Mg} + [M5|?

K, —0.09(2)sg
K& 0.96Q)sg(1)y2)

0.49(1)1ac (1ne
0.64(1)1at (4NF

2.97(3)Ho
0.97(3)no

0.12(2)¢2 54
—0.04(1)2pa

Our results of the different components of dk,, are summarized
in Table 1, from which we obtain:

85u° = 0.21)sg(Dj2) (DiatDNp(De2ps x 107

0 —
8t = 1.16(2)sg(D1ac(DNF(2)g2ps x 1072 (23)

The uncertainties are explained as follows: “sg” is our estimate of
the seagull contribution to I, “(r¥)” comes from the experimental
uncertainty of the K* mean-square charge radius that enters I%,
“lat” and “NF” are the uncertainties in (8 ;) from lattice QCD
and the NF effects, respectively, and “e2p*” represents the chiral
expansion uncertainty in the 2% {M} Mg} + [M2| term from the
bremsstrahlung contribution. We should compare Eq. (23) to the
ChPT result [34]:

+ -2
(6é{Me)ChPT = 0.10(19),2 4 (16)15c x 10

0 —
(aéMe)cm = 0.99(19)2ps (11)1c x 1072 (24)

They are consistent within error bars, but Eq. (23) shows a re-
duction of the total uncertainty by almost an order of magni-
tude, which can be easily understood as follows. First, in ChPT
the O(e?p*) uncertainty is obtained by multiplying the full result,
including the IR-singular pieces that are numerically the largest,
with M} /A% ; meanwhile, within the new formalism those pieces
can be evaluated exactly by simply isolating the pole/convection
term in THY and I'*. The remainders are generically an order of
magnitude smaller, so their associated ©(e%p*) uncertainty is also
suppressed. Secondly, in ChPT the LECs {X;} were estimated within
resonance models [52,53] and were assigned a 100% uncertainty.
On the other hand, some of us pointed out in Ref. [38] that these
LECs are associated with the forward axial y W-box diagram, and
promoted first-principle calculations with lattice QCD. This effec-
tively transforms the LEC uncertainties in ChPT into the lattice and
NF uncertainties in (6 f4)g which are much better under control.

To conclude, we performed a significantly improved calculation
of the EWRC in the K.3 channel. We observe no large system-
atic corrections with respect to previous analyses. Although the
error analysis in the K3 channel is somewhat more complicated,
we deem such large corrections in this channel unlikely. Hence,
it is safe to conclude that the EWRC in K;3 cannot be responsi-
ble for the K;»-K3 discrepancy in Vys. One should then switch to

other SM inputs, such as the lattice calculation of |f fo” ~(0)| and

. (0
the theory inputs of Iﬁﬂ) (Aj) and ‘Sé([ﬁz)-
in 65\‘,’[ also opens a new pathway for the precise measurement
of Vys/Vy4 through the ratio between the semileptonic kaon and

pion decay rate [54]. For instance, we may define:

Finally, our improvement

Tyo Vs FE°7 )
Ry = —2 =4.035@)ps(1)gc x 108 # . (25)
Tle3 Vudf+ 0

Since both the RC uncertainties in I<£3 and 7.3 are now at the
10~* level, the dominant theory uncertainty (apart from lattice in-
puts) of Ry comes from the 1(23 phase space (PS) integral. We
compare this to:

2
VustJr

Vudf:fr

which is currently used to extract V,5/V,4. We see that Ry pos-
sesses a much smaller theoretical uncertainty than R4, and hence
represents a more promising avenue in the future. Our work thus
provides a strong motivation for experimentalists to measure the
T3 branching ratio with an order-of-magnitude increase in preci-
sion [55].

r
Rj= FK'” - 17.55(3)Rc’ (26)
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