000902630 001__ 902630
000902630 005__ 20240610121017.0
000902630 0247_ $$2doi$$a10.1140/epjc/s10052-021-09386-0
000902630 0247_ $$2ISSN$$a1434-6044
000902630 0247_ $$2ISSN$$a1434-6052
000902630 0247_ $$2Handle$$a2128/29096
000902630 0247_ $$2altmetric$$aaltmetric:99227364
000902630 0247_ $$2WOS$$aWOS:000680861900005
000902630 037__ $$aFZJ-2021-04425
000902630 082__ $$a530
000902630 1001_ $$00000-0002-5138-7415$$aRen, Xiu-Lei$$b0$$eCorresponding author
000902630 245__ $$aThe ${\vec{\Lambda (1405)}}$ in resummed chiral effective field theory
000902630 260__ $$aHeidelberg$$bSpringer$$c2021
000902630 3367_ $$2DRIVER$$aarticle
000902630 3367_ $$2DataCite$$aOutput Types/Journal article
000902630 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637660334_28498
000902630 3367_ $$2BibTeX$$aARTICLE
000902630 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902630 3367_ $$00$$2EndNote$$aJournal Article
000902630 520__ $$aWe study the unitarized meson–baryon scattering amplitude at leading order in the strangeness S=−1 sector using time-ordered perturbation theory for a manifestly Lorentz-invariant formulation of chiral effective field theory. By solving the coupled-channel integral equations with the full off-shell dependence of the effective potential and applying subtractive renormalization, we analyze the renormalized scattering amplitudes and obtain the two-pole structure of the Λ(1405) resonance. We also point out the necessity of including higher-order terms.
000902630 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation  Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000902630 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1
000902630 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902630 7001_ $$0P:(DE-Juel1)131142$$aEpelbaum, E.$$b1$$ufzj
000902630 7001_ $$0P:(DE-Juel1)167127$$aGegelia, J.$$b2
000902630 7001_ $$0P:(DE-Juel1)131252$$aMeißner, U.-G.$$b3
000902630 773__ $$0PERI:(DE-600)1459069-4$$a10.1140/epjc/s10052-021-09386-0$$gVol. 81, no. 7, p. 582$$n7$$p582$$tThe European physical journal / C$$v81$$x1434-6044$$y2021
000902630 8564_ $$uhttps://juser.fz-juelich.de/record/902630/files/2102.00914.pdf$$yOpenAccess
000902630 8564_ $$uhttps://juser.fz-juelich.de/record/902630/files/Ren2021_Article_TheVarvecLambda1405%CE%9B1405InResu.pdf$$yOpenAccess
000902630 909CO $$ooai:juser.fz-juelich.de:902630$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902630 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131142$$aForschungszentrum Jülich$$b1$$kFZJ
000902630 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich$$b3$$kFZJ
000902630 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000902630 9141_ $$y2021
000902630 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000902630 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000902630 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902630 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000902630 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J C : 2019$$d2021-01-27
000902630 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-27
000902630 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-27
000902630 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000902630 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000902630 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000902630 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000902630 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902630 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2021-01-27
000902630 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000902630 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000902630 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000902630 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000902630 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000902630 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000902630 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1
000902630 9801_ $$aFullTexts
000902630 980__ $$ajournal
000902630 980__ $$aVDB
000902630 980__ $$aUNRESTRICTED
000902630 980__ $$aI:(DE-Juel1)IAS-4-20090406
000902630 980__ $$aI:(DE-Juel1)IKP-3-20111104
000902630 981__ $$aI:(DE-Juel1)IAS-4-20090406