000902636 001__ 902636
000902636 005__ 20240625095040.0
000902636 0247_ $$2doi$$a10.1021/acs.jpclett.1c02367
000902636 0247_ $$2Handle$$a2128/29085
000902636 0247_ $$2altmetric$$aaltmetric:113062664
000902636 0247_ $$2pmid$$a34491740
000902636 0247_ $$2WOS$$aWOS:000697334300017
000902636 037__ $$aFZJ-2021-04431
000902636 082__ $$a530
000902636 1001_ $$00000-0002-0370-0534$$aGarlatti, Elena$$b0
000902636 245__ $$aA Cost-Effective Semi-Ab Initio Approach to Model Relaxation in Rare-Earth Single-Molecule Magnets
000902636 260__ $$aWashington, DC$$bACS$$c2021
000902636 3367_ $$2DRIVER$$aarticle
000902636 3367_ $$2DataCite$$aOutput Types/Journal article
000902636 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637593991_703
000902636 3367_ $$2BibTeX$$aARTICLE
000902636 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902636 3367_ $$00$$2EndNote$$aJournal Article
000902636 520__ $$aWe discuss a cost-effective approach to understand magnetic relaxation in the new generation of rare-earth single-molecule magnets. It combines ab initio calculations of the crystal field parameters, of the magneto-elastic coupling with local modes, and of the phonon density of states with fitting of only three microscopic parameters. Although much less demanding than a fully ab initio approach, the method gives important physical insights into the origin of the observed relaxation. By applying it to high-anisotropy compounds with very different relaxation, we demonstrate the power of the approach and pinpoint ingredients for improving the performance of single-molecule magnets.
000902636 536__ $$0G:(DE-HGF)POF4-5215$$a5215 - Towards Quantum and Neuromorphic Computing Functionalities (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000902636 588__ $$aDataset connected to DataCite
000902636 7001_ $$0P:(DE-Juel1)162337$$aChiesa, Alessandro$$b1
000902636 7001_ $$0P:(DE-HGF)0$$aBonfà, Pietro$$b2
000902636 7001_ $$0P:(DE-HGF)0$$aMacaluso, Emilio$$b3
000902636 7001_ $$0P:(DE-HGF)0$$aOnuorah, Ifeanyi J.$$b4
000902636 7001_ $$0P:(DE-HGF)0$$aParmar, Vijay S.$$b5
000902636 7001_ $$0P:(DE-HGF)0$$aDing, You-Song$$b6
000902636 7001_ $$00000-0003-4056-097X$$aZheng, Yan-Zhen$$b7
000902636 7001_ $$0P:(DE-HGF)0$$aGiansiracusa, Marcus J.$$b8
000902636 7001_ $$00000-0003-0000-9892$$aReta, Daniel$$b9
000902636 7001_ $$0P:(DE-Juel1)130881$$aPavarini, Eva$$b10
000902636 7001_ $$0P:(DE-HGF)0$$aGuidi, Tatiana$$b11
000902636 7001_ $$00000-0003-1575-7754$$aMills, David P.$$b12
000902636 7001_ $$00000-0002-8604-0171$$aChilton, Nicholas F.$$b13
000902636 7001_ $$00000-0002-7101-3963$$aWinpenny, Richard E. P.$$b14
000902636 7001_ $$0P:(DE-HGF)0$$aSantini, Paolo$$b15
000902636 7001_ $$00000-0002-2536-1326$$aCarretta, Stefano$$b16$$eCorresponding author
000902636 773__ $$0PERI:(DE-600)2522838-9$$a10.1021/acs.jpclett.1c02367$$gVol. 12, no. 36, p. 8826 - 8832$$n36$$p8826 - 8832$$tThe journal of physical chemistry letters$$v12$$x1948-7185$$y2021
000902636 8564_ $$uhttps://juser.fz-juelich.de/record/902636/files/acs.jpclett.1c02367.pdf$$yOpenAccess
000902636 909CO $$ooai:juser.fz-juelich.de:902636$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902636 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130881$$aForschungszentrum Jülich$$b10$$kFZJ
000902636 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5215$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000902636 9141_ $$y2021
000902636 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000902636 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000902636 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902636 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM LETT : 2019$$d2021-01-27
000902636 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ PHYS CHEM LETT : 2019$$d2021-01-27
000902636 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000902636 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000902636 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902636 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000902636 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000902636 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000902636 920__ $$lyes
000902636 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x0
000902636 9801_ $$aFullTexts
000902636 980__ $$ajournal
000902636 980__ $$aVDB
000902636 980__ $$aUNRESTRICTED
000902636 980__ $$aI:(DE-Juel1)IAS-3-20090406
000902636 981__ $$aI:(DE-Juel1)PGI-2-20110106