001     902637
005     20240625095040.0
024 7 _ |a 10.1103/PhysRevB.104.125116
|2 doi
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 2469-9977
|2 ISSN
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/29091
|2 Handle
024 7 _ |a altmetric:113726103
|2 altmetric
024 7 _ |a WOS:000704419000001
|2 WOS
037 _ _ |a FZJ-2021-04432
082 _ _ |a 530
100 1 _ |a Zhang, Guoren
|0 P:(DE-Juel1)144464
|b 0
245 _ _ |a Magnetic superexchange couplings in Sr 2 IrO 4
260 _ _ |a Woodbury, NY
|c 2021
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1637647633_26757
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We investigate the magnetic couplings in Sr2IrO4 in the Mott-insulating picture, combining density-functional theory, dynamical mean-field theory, and many-body perturbation theory. We first determine the form of the jeff=1/2 pseudospin via the local-density-approximation + dynamical mean-field theory approach. Next we study the magnetic interactions in the strong-to-intermediate coupling regime. To this end, we calculate the superexchange pseudospin tensors Γ1, Γ2, and Γ3 up to fourth order and analyze their dependence on the screened Coulomb interaction integrals U and J. We show that, due to term cancellations, the experimental nearest-neighbor coupling Γ1 is reasonably well reproduced for a whole range of realistic (U,J) values. We show that increasing the Hund's rule coupling J (within the window of realistic values) can lead to large fourth-order contributions, which could explain the ferromagnetic next-nearest-neighbor coupling Γ2 extracted from the spin-wave dispersion. This regime is characterized by a sizable ring exchange K. For (U,J) values that yield a Mott insulator with a half-filled jeff=1/2 state, however, fourth-order terms remain minor even if the gap is small. For no realistic parameters, we find a sizable next-next-nearest-neighbor coupling Γ3∼|Γ2|. Possible implications are discussed.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Pavarini, Eva
|0 P:(DE-Juel1)130881
|b 1
|e Corresponding author
773 _ _ |a 10.1103/PhysRevB.104.125116
|g Vol. 104, no. 12, p. 125116
|0 PERI:(DE-600)2844160-6
|n 12
|p 125116
|t Physical review / B
|v 104
|y 2021
|x 1098-0121
856 4 _ |u https://juser.fz-juelich.de/record/902637/files/PhysRevB.104.125116.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:902637
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130881
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-05-04
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2019
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-3-20090406
|k IAS-3
|l Theoretische Nanoelektronik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-3-20090406
981 _ _ |a I:(DE-Juel1)PGI-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21