001     902638
005     20240625095040.0
024 7 _ |a 10.1007/s40766-021-00025-8
|2 doi
024 7 _ |a 0035-5917
|2 ISSN
024 7 _ |a 0393-697X
|2 ISSN
024 7 _ |a 1826-9850
|2 ISSN
024 7 _ |a 2128/29092
|2 Handle
024 7 _ |a altmetric:115244634
|2 altmetric
024 7 _ |a WOS:000673387500001
|2 WOS
037 _ _ |a FZJ-2021-04433
082 _ _ |a 530
100 1 _ |a Pavarini, Eva
|0 P:(DE-Juel1)130881
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Solving the strong-correlation problem in materials
260 _ _ |a Bologna
|c 2021
|b SIF
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1637649737_27898
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This article is a short introduction to the modern computational techniques used to tackle the many-body problem in materials. The aim is to present the basic ideas, using simple examples to illustrate strengths and weaknesses of each method. We will start from density-functional theory (DFT) and the Kohn–Sham construction—the standard computational tools for performing electronic structure calculations. Leaving the realm of rigorous density-functional theory, we will discuss the established practice of adopting the Kohn–Sham Hamiltonian as approximate model. After recalling the triumphs of the Kohn–Sham description, we will stress the fundamental reasons of its failure for strongly-correlated compounds, and discuss the strategies adopted to overcome the problem. The article will then focus on the most effective method so far, the DFT+DMFT technique and its extensions. Achievements, open issues and possible future developments will be reviewed. The key differences between dynamical (DFT+DMFT) and static (DFT+U) mean-field methods will be elucidated. In the conclusion, we will assess the apparent dichotomy between first-principles and model-based techniques, emphasizing the common ground that in fact they share.
536 _ _ |a 5215 - Towards Quantum and Neuromorphic Computing Functionalities (POF4-521)
|0 G:(DE-HGF)POF4-5215
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
773 _ _ |a 10.1007/s40766-021-00025-8
|g Vol. 44, no. 11, p. 597 - 640
|0 PERI:(DE-600)2143515-7
|n 11
|p 597 - 640
|t Rivista del nuovo cimento
|v 44
|y 2021
|x 0035-5917
856 4 _ |u https://juser.fz-juelich.de/record/902638/files/Pavarini2021_Article_SolvingTheStrong-correlationPr.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:902638
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130881
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5215
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-05
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b RIV NUOVO CIMENTO : 2019
|d 2021-02-05
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b RIV NUOVO CIMENTO : 2019
|d 2021-02-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-05
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-05
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-3-20090406
|k IAS-3
|l Theoretische Nanoelektronik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-3-20090406
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)PGI-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21