000902639 001__ 902639
000902639 005__ 20240625095040.0
000902639 0247_ $$2doi$$a10.1103/PhysRevB.103.075136
000902639 0247_ $$2ISSN$$a1098-0121
000902639 0247_ $$2ISSN$$a2469-9977
000902639 0247_ $$2ISSN$$a0163-1829
000902639 0247_ $$2ISSN$$a0556-2805
000902639 0247_ $$2ISSN$$a1095-3795
000902639 0247_ $$2ISSN$$a1538-4489
000902639 0247_ $$2ISSN$$a1550-235X
000902639 0247_ $$2ISSN$$a2469-9950
000902639 0247_ $$2ISSN$$a2469-9969
000902639 0247_ $$2Handle$$a2128/29089
000902639 0247_ $$2WOS$$aWOS:000620345900001
000902639 037__ $$aFZJ-2021-04434
000902639 082__ $$a530
000902639 1001_ $$0P:(DE-Juel1)165898$$aMußhoff, Julian$$b0
000902639 245__ $$aMagnetic response trends in cuprates and the t − t ′ Hubbard model
000902639 260__ $$aWoodbury, NY$$bInst.$$c2021
000902639 3367_ $$2DRIVER$$aarticle
000902639 3367_ $$2DataCite$$aOutput Types/Journal article
000902639 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637595333_535
000902639 3367_ $$2BibTeX$$aARTICLE
000902639 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902639 3367_ $$00$$2EndNote$$aJournal Article
000902639 520__ $$aWe perform a systematic study of static and dynamical magnetic properties of the t−t′ Hubbard model in a parameter regime relevant for high-temperature superconducting cuprates. We adopt as solution method the dynamical mean-field theory approximation and its real-space cluster extension. Our results show that large t′/t suppresses incommensurate features and eventually leads to ferromagnetic instabilities for sufficiently large hole doping x. We identify isosbestic points which separate parts of the Brillouin zone with different scaling behaviors. Calculations are compared to available nuclear magnetic resonance, nuclear quadrupole resonance, inelastic neutron scattering, and resonant inelastic x-ray scattering experiments. We show that while many trends are correctly described, e.g., the evolution with x, some aspects of the spin-lattice relaxation rates can apparently only be explained invoking accidental cancellations. In order to capture the material dependence of magnetic properties in full, it may be necessary to add further degrees of freedom.
000902639 536__ $$0G:(DE-HGF)POF4-5215$$a5215 - Towards Quantum and Neuromorphic Computing Functionalities (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000902639 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902639 7001_ $$0P:(DE-Juel1)143858$$aKiani, Amin$$b1
000902639 7001_ $$0P:(DE-Juel1)130881$$aPavarini, Eva$$b2$$eCorresponding author
000902639 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.103.075136$$gVol. 103, no. 7, p. 075136$$n7$$p075136$$tPhysical review / B$$v103$$x1098-0121$$y2021
000902639 8564_ $$uhttps://juser.fz-juelich.de/record/902639/files/PhysRevB.103.075136.pdf$$yOpenAccess
000902639 909CO $$ooai:juser.fz-juelich.de:902639$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130881$$aForschungszentrum Jülich$$b2$$kFZJ
000902639 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5215$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000902639 9141_ $$y2021
000902639 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000902639 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000902639 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000902639 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000902639 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000902639 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2019$$d2021-05-04
000902639 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000902639 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000902639 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000902639 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902639 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000902639 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000902639 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000902639 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000902639 920__ $$lyes
000902639 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x0
000902639 9801_ $$aFullTexts
000902639 980__ $$ajournal
000902639 980__ $$aVDB
000902639 980__ $$aUNRESTRICTED
000902639 980__ $$aI:(DE-Juel1)IAS-3-20090406
000902639 981__ $$aI:(DE-Juel1)PGI-2-20110106