000902657 001__ 902657
000902657 005__ 20220103172027.0
000902657 0247_ $$2doi$$a10.1016/j.jappgeo.2021.104362
000902657 0247_ $$2ISSN$$a0926-9851
000902657 0247_ $$2ISSN$$a1879-1859
000902657 0247_ $$2Handle$$a2128/29135
000902657 0247_ $$2altmetric$$aaltmetric:107399736
000902657 0247_ $$2WOS$$aWOS:000662834300010
000902657 037__ $$aFZJ-2021-04444
000902657 082__ $$a550
000902657 1001_ $$0P:(DE-HGF)0$$aKeskinen, Johanna$$b0
000902657 245__ $$aPractical data acquisition strategy for time-lapse experiments using crosshole GPR and full-waveform inversion
000902657 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000902657 3367_ $$2DRIVER$$aarticle
000902657 3367_ $$2DataCite$$aOutput Types/Journal article
000902657 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637764449_23808
000902657 3367_ $$2BibTeX$$aARTICLE
000902657 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902657 3367_ $$00$$2EndNote$$aJournal Article
000902657 520__ $$aCrosshole ground penetrating radar (GPR) methods are increasingly used in time-lapse studies of flow in the uppermost near subsurface with important implications for our understanding of e.g., water infiltration in the unsaturated zone, and fluid flow in the saturated zone. A particular challenge in such time-lapse crosshole studies is the trade-off between collecting sufficient data to be able to resolve how a tracer moves, and, minimizing the data acquisition time such that the data approximates a static state. We test how dense recording geometries are needed for resolving a gas bubble injected in a highly heterogeneous chalk reservoir analogue using a full-waveform inversion (FWI) approach for modelling the crosshole GPR data. We show that even relatively sparse geometries provide sufficient resolution of the permittivity contrast caused by the gas bubble, provided that the detailed background permittivity structure is known from prior (before gas injection) FWI analysis of densely recorded high-resolution data. The conductivity contrast caused by the gas is more challenging to recover and the resolution suffers to a higher degree when reducing the survey geometry or at higher noise levels. As long as the permittivity change during the time-lapse experiment is the main target, a significant reduction in acquisition time is therefore possible as compared to the time needed to record the background permittivity structure. This reduced acquisition time has important practical implications for time-lapse experiments under realistic conditions. Our results are based on synthetic analysis based on a realistic subsurface scenario closely linked to characterization of heterogeneous chalk reservoirs. However, our findings also have important implications for planning of future time-lapse studies in other settings.
000902657 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000902657 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902657 7001_ $$0P:(DE-HGF)0$$aLooms, Majken C.$$b1
000902657 7001_ $$0P:(DE-Juel1)129483$$aKlotzsche, Anja$$b2$$eCorresponding author
000902657 7001_ $$0P:(DE-HGF)0$$aNielsen, Lars$$b3$$eCorresponding author
000902657 773__ $$0PERI:(DE-600)1496997-X$$a10.1016/j.jappgeo.2021.104362$$gVol. 191, p. 104362 -$$p104362 -$$tJournal of applied geophysics$$v191$$x0926-9851$$y2021
000902657 8564_ $$uhttps://juser.fz-juelich.de/record/902657/files/APPGEO_2019_705_Revision%201_V0.pdf$$yPublished on 2021-05-12. Available in OpenAccess from 2022-05-12.
000902657 8564_ $$uhttps://juser.fz-juelich.de/record/902657/files/Keskinen%20et%20al.%20%282021%29%20-%20Practical%20data%20acquisition%20strategy%20for%20time-lapse%20experiments%20using%20crosshole%20GPR%20and%20full-waveform%20inversion-1.pdf$$yRestricted
000902657 909CO $$ooai:juser.fz-juelich.de:902657$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902657 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129483$$aForschungszentrum Jülich$$b2$$kFZJ
000902657 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000902657 9141_ $$y2021
000902657 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000902657 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000902657 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000902657 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000902657 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000902657 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL GEOPHYS : 2019$$d2021-01-27
000902657 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000902657 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000902657 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000902657 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000902657 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000902657 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000902657 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000902657 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000902657 920__ $$lyes
000902657 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000902657 980__ $$ajournal
000902657 980__ $$aVDB
000902657 980__ $$aUNRESTRICTED
000902657 980__ $$aI:(DE-Juel1)IBG-3-20101118
000902657 9801_ $$aFullTexts