000902680 001__ 902680
000902680 005__ 20240313103128.0
000902680 0247_ $$2doi$$a10.7554/eLife.68422
000902680 0247_ $$2Handle$$a2128/30547
000902680 0247_ $$2WOS$$aWOS:000794921600001
000902680 037__ $$aFZJ-2021-04467
000902680 082__ $$a600
000902680 1001_ $$0P:(DE-Juel1)156459$$aDahmen, David$$b0$$eCorresponding author
000902680 245__ $$aGlobal organization of neuronal activity only requires unstructured local connectivity
000902680 260__ $$aCambridge$$beLife Sciences Publications$$c2022
000902680 3367_ $$2DRIVER$$aarticle
000902680 3367_ $$2DataCite$$aOutput Types/Journal article
000902680 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643115151_8120
000902680 3367_ $$2BibTeX$$aARTICLE
000902680 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902680 3367_ $$00$$2EndNote$$aJournal Article
000902680 520__ $$aModern electrophysiological recordings simultaneously capture single-unit spiking activities of hundreds of neurons spread across large cortical distances. Yet, this parallel activity is often confined to relatively low-dimensional manifolds. This implies strong coordination also among neurons that are most likely not even connected. Here, we combine in vivo recordings with network models and theory to characterize the nature of mesoscopic coordination patterns in macaque motor cortex and to expose their origin: We find that heterogeneity in local connectivity supports network states with complex long-range cooperation between neurons that arises from multi-synaptic, short-range connections. Our theory explains the experimentally observed spatial organization of covariances in resting state recordings as well as the behaviorally related modulation of covariance patterns during a reach-to-grasp task. The ubiquity of heterogeneity in local cortical circuits suggests that the brain uses the described mechanism to flexibly adapt neuronal coordination to momentary demands.
000902680 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000902680 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x1
000902680 536__ $$0G:(DE-Juel1)HGF-SMHB-2014-2018$$aMSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018)$$cHGF-SMHB-2014-2018$$fMSNN$$x2
000902680 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x3
000902680 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x4
000902680 536__ $$0G:(GEPRIS)368482240$$aGRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)$$c368482240$$x5
000902680 588__ $$aDataset connected to DataCite
000902680 7001_ $$0P:(DE-Juel1)174497$$aLayer, Moritz$$b1$$ufzj
000902680 7001_ $$0P:(DE-Juel1)168574$$aDeutz, Lukas$$b2
000902680 7001_ $$0P:(DE-Juel1)171408$$aDabrowska, Paulina$$b3
000902680 7001_ $$0P:(DE-Juel1)168479$$aVoges, Nicole$$b4
000902680 7001_ $$0P:(DE-Juel1)171972$$avon Papen, Michael$$b5
000902680 7001_ $$0P:(DE-HGF)0$$aBrochier, Thomas$$b6
000902680 7001_ $$0P:(DE-Juel1)172858$$aRiehle, Alexa$$b7$$ufzj
000902680 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b8$$ufzj
000902680 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b9$$ufzj
000902680 7001_ $$0P:(DE-Juel1)144806$$aHelias, Moritz$$b10$$ufzj
000902680 773__ $$0PERI:(DE-600)2687154-3$$a10.7554/eLife.68422$$pe68422$$teLife$$v11$$x2050-084X$$y2022
000902680 8564_ $$uhttps://juser.fz-juelich.de/record/902680/files/Invoice_P007896.pdf
000902680 8564_ $$uhttps://juser.fz-juelich.de/record/902680/files/elife-68422-v1.pdf$$yOpenAccess
000902680 8767_ $$8P007896$$92021-11-23$$d2021-12-01$$eAPC$$jZahlung erfolgt$$z$2,500 / Belegnr.: 1200173877
000902680 909CO $$ooai:juser.fz-juelich.de:902680$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000902680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156459$$aForschungszentrum Jülich$$b0$$kFZJ
000902680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174497$$aForschungszentrum Jülich$$b1$$kFZJ
000902680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172858$$aForschungszentrum Jülich$$b7$$kFZJ
000902680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b8$$kFZJ
000902680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b9$$kFZJ
000902680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144806$$aForschungszentrum Jülich$$b10$$kFZJ
000902680 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000902680 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
000902680 9141_ $$y2022
000902680 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000902680 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000902680 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000902680 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000902680 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902680 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902680 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000902680 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELIFE : 2021$$d2022-11-23
000902680 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23
000902680 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23
000902680 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-23T12:20:44Z
000902680 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-23T12:20:44Z
000902680 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-09-23T12:20:44Z
000902680 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-23
000902680 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-23
000902680 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-23
000902680 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-23
000902680 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-23
000902680 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-23
000902680 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELIFE : 2021$$d2022-11-23
000902680 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000902680 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000902680 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000902680 9801_ $$aAPC
000902680 9801_ $$aFullTexts
000902680 980__ $$ajournal
000902680 980__ $$aVDB
000902680 980__ $$aUNRESTRICTED
000902680 980__ $$aI:(DE-Juel1)INM-6-20090406
000902680 980__ $$aI:(DE-Juel1)IAS-6-20130828
000902680 980__ $$aI:(DE-Juel1)INM-10-20170113
000902680 980__ $$aAPC
000902680 981__ $$aI:(DE-Juel1)IAS-6-20130828