Hauptseite > Publikationsdatenbank > Bayesian inference of root architectural model parameters from synthetic field data > print |
001 | 902681 | ||
005 | 20230815122840.0 | ||
024 | 7 | _ | |a 10.1007/s11104-021-05026-4 |2 doi |
024 | 7 | _ | |a 0032-079X |2 ISSN |
024 | 7 | _ | |a 1573-5036 |2 ISSN |
024 | 7 | _ | |a 2128/29145 |2 Handle |
024 | 7 | _ | |a altmetric:111614644 |2 altmetric |
024 | 7 | _ | |a WOS:000675319900001 |2 WOS |
037 | _ | _ | |a FZJ-2021-04468 |
082 | _ | _ | |a 580 |
100 | 1 | _ | |a Morandage, Shehan |0 P:(DE-Juel1)168106 |b 0 |
245 | _ | _ | |a Bayesian inference of root architectural model parameters from synthetic field data |
260 | _ | _ | |a Dordrecht [u.a.] |c 2021 |b Springer Science + Business Media B.V |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1637840918_22715 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Background and aimsCharacterizing root system architectures of field-grown crops is challenging as root systems are hidden in the soil. We investigate the possibility of estimating root architecture model parameters from soil core data in a Bayesian framework.MethodsIn a synthetic experiment, we simulated wheat root systems in a virtual field plot with the stochastic CRootBox model. We virtually sampled soil cores from this plot to create synthetic measurement data. We used the Markov chain Monte Carlo (MCMC) DREAM(ZS) sampler to estimate the most sensitive root system architecture parameters. To deal with the CRootBox model stochasticity and limited computational resources, we essentially added a stochastic component to the likelihood function, thereby turning the MCMC sampling into a form of approximate Bayesian computation (ABC).ResultsA few zero-order root parameters: maximum length, elongation rate, insertion angles, and numbers of zero-order roots, with narrow posterior distributions centered around true parameter values were identifiable from soil core data. Yet other zero-order and higher-order root parameters were not identifiable showing a sizeable posterior uncertainty.ConclusionsBayesian inference of root architecture parameters from root density profiles is an effective method to extract information about sensitive parameters hidden in these profiles. Equally important, this method also identifies which information about root architecture is lost when root architecture is aggregated in root density profiles. |
536 | _ | _ | |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) |0 G:(DE-HGF)POF4-2173 |c POF4-217 |x 0 |f POF IV |
536 | _ | _ | |a DFG project 15232683 - TRR 32: Muster und Strukturen in Boden-Pflanzen-Atmosphären-Systemen: Erfassung, Modellierung und Datenassimilation |0 G:(GEPRIS)15232683 |c 15232683 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Laloy, Eric |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Schnepf, Andrea |0 P:(DE-Juel1)157922 |b 2 |u fzj |
700 | 1 | _ | |a Vereecken, Harry |0 P:(DE-Juel1)129549 |b 3 |u fzj |
700 | 1 | _ | |a Vanderborght, Jan |0 P:(DE-Juel1)129548 |b 4 |e Corresponding author |
773 | _ | _ | |a 10.1007/s11104-021-05026-4 |g Vol. 467, no. 1-2, p. 67 - 89 |0 PERI:(DE-600)1478535-3 |n 1-2 |p 67 - 89 |t Plant and soil |v 467 |y 2021 |x 0032-079X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/902681/files/Morandage2021_Article_BayesianInferenceOfRootArchite.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:902681 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)157922 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129549 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129548 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2173 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2021-02-03 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-03 |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2021-02-03 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-03 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-02-03 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-02-03 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PLANT SOIL : 2019 |d 2021-02-03 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2021-02-03 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-03 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-02-03 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-03 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DEAL: Springer Nature 2020 |2 APC |0 PC:(DE-HGF)0113 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-3-20101118 |k IBG-3 |l Agrosphäre |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBG-3-20101118 |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|