000902682 001__ 902682
000902682 005__ 20230815122842.0
000902682 0247_ $$2doi$$a10.1007/s11356-021-14878-3
000902682 0247_ $$2ISSN$$a0944-1344
000902682 0247_ $$2ISSN$$a1614-7499
000902682 0247_ $$2Handle$$a2128/29160
000902682 0247_ $$2altmetric$$aaltmetric:107797758
000902682 0247_ $$2pmid$$a34142318
000902682 0247_ $$2WOS$$aWOS:000662916500010
000902682 037__ $$aFZJ-2021-04469
000902682 082__ $$a690
000902682 1001_ $$0P:(DE-Juel1)177809$$aJorda, Helena$$b0$$eCorresponding author
000902682 245__ $$aMechanistic modeling of pesticide uptake with a 3D plant architecture model
000902682 260__ $$aHeidelberg$$bSpringer$$c2021
000902682 3367_ $$2DRIVER$$aarticle
000902682 3367_ $$2DataCite$$aOutput Types/Journal article
000902682 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637851348_10843
000902682 3367_ $$2BibTeX$$aARTICLE
000902682 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902682 3367_ $$00$$2EndNote$$aJournal Article
000902682 520__ $$aMeaningful assessment of pesticide fate in soils and plants is based on fate models that represent all relevant processes. With mechanistic models, these processes can be simulated based on soil, substance, and plant properties. We present a mechanistic model that simulates pesticide uptake from soil and investigate how it is influenced, depending on the governing uptake process, by root and substance properties and by distributions of the substance and water in the soil profile. A new root solute uptake model based on a lumped version of the Trapp model (Trapp, 2000) was implemented in a coupled version of R-SWMS-ParTrace models for 3-D water flow and solute transport in soil and root systems. Solute uptake was modeled as two individual processes: advection with the transpiration stream and diffusion through the root membrane. We set up the model for a FOCUS scenario used in the European Union (EU) for pesticide registration. Considering a single vertical root and advective uptake only, the root hydraulic properties could be defined so that water and substance uptake and substance fate in soil showed a good agreement with the results of the 1D PEARL model, one of the reference models used in the EU for pesticide registration. Simulations with a complex root system and using root hydraulic parameters reported in the literature predicted larger water uptake from the upper root zone, leading to larger pesticide uptake when pesticides are concentrated in the upper root zone. Dilution of root water concentrations at the top root zone with water with low pesticide concentration taken up from the bottom of the root zone leads to larger uptake of solute when uptake was simulated as a diffusive process. This illustrates the importance of modeling uptake mechanistically and considering root and solute physical and chemical properties, especially when root-zone pesticide concentrations are non-uniform.
000902682 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000902682 536__ $$0G:(GEPRIS)403641034$$aDFG project 403641034 - Modellierung von Selbstorganisation in der Rhizosphäre $$c403641034$$x1
000902682 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902682 7001_ $$0P:(DE-Juel1)144686$$aHuber, Katrin$$b1
000902682 7001_ $$0P:(DE-Juel1)165896$$aKunkel, Asta$$b2
000902682 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b3
000902682 7001_ $$0P:(DE-Juel1)129477$$aJavaux, Mathieu$$b4
000902682 7001_ $$0P:(DE-HGF)0$$aOberdörster, Christoph$$b5
000902682 7001_ $$0P:(DE-HGF)0$$aHammel, Klaus$$b6
000902682 7001_ $$0P:(DE-Juel1)157922$$aSchnepf, Andrea$$b7
000902682 773__ $$0PERI:(DE-600)2014192-0$$a10.1007/s11356-021-14878-3$$gVol. 28, no. 39, p. 55678 - 55689$$n39$$p55678 - 55689$$tEnvironmental science and pollution research$$v28$$x0944-1344$$y2021
000902682 8564_ $$uhttps://juser.fz-juelich.de/record/902682/files/Jorda2021_Article_MechanisticModelingOfPesticide.pdf$$yOpenAccess
000902682 8767_ $$d2021-06-17$$eHybrid-OA$$jDEAL
000902682 909CO $$ooai:juser.fz-juelich.de:902682$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000902682 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177809$$aForschungszentrum Jülich$$b0$$kFZJ
000902682 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b3$$kFZJ
000902682 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129477$$aForschungszentrum Jülich$$b4$$kFZJ
000902682 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157922$$aForschungszentrum Jülich$$b7$$kFZJ
000902682 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000902682 9141_ $$y2021
000902682 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000902682 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000902682 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-29
000902682 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-29
000902682 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902682 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENVIRON SCI POLLUT R : 2019$$d2021-01-29
000902682 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000902682 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-29$$wger
000902682 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000902682 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000902682 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902682 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-01-29
000902682 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000902682 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000902682 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000902682 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000902682 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000902682 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000902682 920__ $$lyes
000902682 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000902682 9801_ $$aFullTexts
000902682 980__ $$ajournal
000902682 980__ $$aVDB
000902682 980__ $$aUNRESTRICTED
000902682 980__ $$aI:(DE-Juel1)IBG-3-20101118
000902682 980__ $$aAPC