000902722 001__ 902722
000902722 005__ 20240712113120.0
000902722 0247_ $$2doi$$a10.3390/batteries7040070
000902722 0247_ $$2Handle$$a2128/29123
000902722 0247_ $$2WOS$$aWOS:000736303500001
000902722 0247_ $$2altmetric$$aaltmetric:119580947
000902722 037__ $$aFZJ-2021-04504
000902722 082__ $$a530
000902722 1001_ $$0P:(DE-Juel1)171310$$aBeuse, Thomas$$b0
000902722 245__ $$aComprehensive Insights into the Porosity of Lithium-Ion Battery Electrodes: A Comparative Study on Positive Electrodes Based on LiNi0.6Mn0.2Co0.2O2 (NMC622)
000902722 260__ $$aBasel$$bMDPI$$c2021
000902722 3367_ $$2DRIVER$$aarticle
000902722 3367_ $$2DataCite$$aOutput Types/Journal article
000902722 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637753752_12881
000902722 3367_ $$2BibTeX$$aARTICLE
000902722 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902722 3367_ $$00$$2EndNote$$aJournal Article
000902722 520__ $$aPorosity is frequently specified as only a value to describe the microstructure of a battery electrode. However, porosity is a key parameter for the battery electrode performance and mechanical properties such as adhesion and structural electrode integrity during charge/discharge cycling. This study illustrates the importance of using more than one method to describe the electrode microstructure of LiNi0.6Mn0.2Co0.2O2 (NMC622)-based positive electrodes. A correlative approach, from simple thickness measurements to tomography and segmentation, allowed deciphering the true porous electrode structure and to comprehend the advantages and inaccuracies of each of the analytical techniques. Herein, positive electrodes were calendered from a porosity of 44–18% to cover a wide range of electrode microstructures in state-of-the-art lithium-ion batteries. Especially highly densified electrodes cannot simply be described by a close packing of active and inactive material components, since a considerable amount of active material particles crack due to the intense calendering process. Therefore, a digital 3D model was created based on tomography data and simulation of the inactive material, which allowed the investigation of the complete pore network. For lithium-ion batteries, the results of the mercury intrusion experiments in combination with gas physisorption/pycnometry experiments provide comprehensive insight into the microstructure of positive electrodes.
000902722 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000902722 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902722 7001_ $$00000-0002-5416-7055$$aFingerle, Mathias$$b1
000902722 7001_ $$0P:(DE-HGF)0$$aWagner, Christian$$b2$$eCorresponding author
000902722 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b3
000902722 7001_ $$0P:(DE-HGF)0$$aBörner, Markus$$b4$$eCorresponding author
000902722 773__ $$0PERI:(DE-600)2813972-0$$a10.3390/batteries7040070$$gVol. 7, no. 4, p. 70 -$$n4$$p70 -$$tBatteries$$v7$$x2313-0105$$y2021
000902722 8564_ $$uhttps://juser.fz-juelich.de/record/902722/files/Comprehensive%20insights.pdf$$yOpenAccess
000902722 909CO $$ooai:juser.fz-juelich.de:902722$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b3$$kFZJ
000902722 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000902722 9141_ $$y2021
000902722 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-20
000902722 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902722 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-20
000902722 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-08-20
000902722 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-20
000902722 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-20
000902722 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902722 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-08-20
000902722 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-20
000902722 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-20
000902722 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-20
000902722 920__ $$lyes
000902722 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000902722 9801_ $$aFullTexts
000902722 980__ $$ajournal
000902722 980__ $$aVDB
000902722 980__ $$aUNRESTRICTED
000902722 980__ $$aI:(DE-Juel1)IEK-12-20141217
000902722 981__ $$aI:(DE-Juel1)IMD-4-20141217