000902739 001__ 902739
000902739 005__ 20250129092411.0
000902739 0247_ $$2doi$$a10.1093/brain/awy099
000902739 0247_ $$2ISSN$$a0006-8950
000902739 0247_ $$2ISSN$$a1460-2156
000902739 0247_ $$2Handle$$a2128/30703
000902739 0247_ $$2altmetric$$aaltmetric:37947543
000902739 0247_ $$2pmid$$apmid:29672680
000902739 0247_ $$2WOS$$aWOS:000434113500030
000902739 037__ $$aFZJ-2021-04521
000902739 082__ $$a610
000902739 1001_ $$0P:(DE-HGF)0$$aSabri, Osama$$b0$$eCorresponding author
000902739 245__ $$aCognitive correlates of α4β2 nicotinic acetylcholine receptors in mild Alzheimer’s dementia
000902739 260__ $$aOxford$$bOxford Univ. Press$$c2018
000902739 3367_ $$2DRIVER$$aarticle
000902739 3367_ $$2DataCite$$aOutput Types/Journal article
000902739 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645004420_14366
000902739 3367_ $$2BibTeX$$aARTICLE
000902739 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902739 3367_ $$00$$2EndNote$$aJournal Article
000902739 520__ $$aIn early Alzheimer’s dementia, there is a need for PET biomarkers of disease progression with close associations to cognitive dysfunction that may aid to predict further cognitive decline and neurodegeneration. Amyloid biomarkers are not suitable for that purpose. The α4β2 nicotinic acetylcholine receptors (α4β2-nAChRs) are widely abundant in the human brain. As neuromodulators they play an important role in cognitive functions such as attention, learning and memory. Post-mortem studies reported lower expression of α4β2-nAChRs in more advanced Alzheimer’s dementia. However, there is ongoing controversy whether α4β2-nAChRs are reduced in early Alzheimer’s dementia. Therefore, using the recently developed α4β2-nAChR-specific radioligand (−)-18F-flubatine and PET, we aimed to quantify the α4β2-nAChR availability and its relationship to specific cognitive dysfunction in mild Alzheimer’s dementia. Fourteen non-smoking patients with mild Alzheimer’s dementia, drug-naïve for cholinesterase therapy, were compared with 15 non-smoking healthy controls matched for age, sex and education by applying (−)-18F-flubatine PET together with a neuropsychological test battery. The one-tissue compartment model and Logan plot method with arterial input function were used for kinetic analysis to obtain the total distribution volume (VT) as the primary, and the specific binding part of the distribution volume (VS) as the secondary quantitative outcome measure of α4β2-nAChR availability. VS was determined by using a pseudo-reference region. Correlations between VT within relevant brain regions and Z-scores of five cognitive functions (episodic memory, executive function/working memory, attention, language, visuospatial function) were calculated. VT (and VS) were applied for between-group comparisons. Volume of interest and statistical parametric mapping analyses were carried out. Analyses revealed that in patients with mild Alzheimer’s dementia compared to healthy controls, there was significantly lower VT, especially within the hippocampus, fronto-temporal cortices, and basal forebrain, which was similar to comparisons of VS. VT decline in Alzheimer’s dementia was associated with distinct domains of impaired cognitive functioning, especially episodic memory and executive function/working memory. Using (−)-18F-flubatine PET in patients with mild Alzheimer’s dementia, we show for the first time a cholinergic α4β2-nAChR deficiency mainly present within the basal forebrain-cortical and septohippocampal cholinergic projections and a relationship between lower α4β2-nAChR availability and impairment of distinct cognitive domains, notably episodic memory and executive function/working memory. This shows the potential of (−)-18F-flubatine as PET biomarker of cholinergic α4β2-nAChR dysfunction and specific cognitive decline. Thus, if validated by longitudinal PET studies, (−)-18F-flubatine might become a PET biomarker of progression of neurodegeneration in Alzheimer’s dementia.
000902739 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000902739 536__ $$0G:(DE-Juel1)BMBF-01EZ0822$$aBMBF-01EZ0822 - NorChloro-Fluoro HomoEpiBatidin (NCFHEB)  ein potentieller Positronen-Emission Tomographie-(PET) Marker der frühen Alzheimer-Demenz (BMBF-01EZ0822)$$cBMBF-01EZ0822$$x1
000902739 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902739 7001_ $$0P:(DE-HGF)0$$aMeyer, Philipp M$$b1
000902739 7001_ $$0P:(DE-HGF)0$$aGräf, Susanne$$b2
000902739 7001_ $$0P:(DE-HGF)0$$aHesse, Swen$$b3
000902739 7001_ $$0P:(DE-HGF)0$$aWilke, Stephan$$b4
000902739 7001_ $$0P:(DE-HGF)0$$aBecker, Georg-Alexander$$b5
000902739 7001_ $$0P:(DE-HGF)0$$aRullmann, Michael$$b6
000902739 7001_ $$0P:(DE-HGF)0$$aPatt, Marianne$$b7
000902739 7001_ $$0P:(DE-HGF)0$$aLuthardt, Julia$$b8
000902739 7001_ $$0P:(DE-Juel1)133954$$aWagenknecht, Gudrun$$b9
000902739 7001_ $$aHoepping, Alexander$$b10
000902739 7001_ $$aSmits, Rene$$b11
000902739 7001_ $$aFranke, Annegret$$b12
000902739 7001_ $$aSattler, Bernhard$$b13
000902739 7001_ $$aTiepolt, Solveig$$b14
000902739 7001_ $$aFischer, Steffen$$b15
000902739 7001_ $$aDeuther-Conrad, Winnie$$b16
000902739 7001_ $$aHegerl, Ulrich$$b17
000902739 7001_ $$aBarthel, Henryk$$b18
000902739 7001_ $$aSchönknecht, Peter$$b19
000902739 7001_ $$aBrust, Peter$$b20
000902739 773__ $$0PERI:(DE-600)1474117-9$$a10.1093/brain/awy099$$gVol. 141, no. 6, p. 1840 - 1854$$n6$$p1840 - 1854$$tBrain$$v141$$x0006-8950$$y2018
000902739 8564_ $$uhttps://juser.fz-juelich.de/record/902739/files/awy099.pdf$$yOpenAccess
000902739 909CO $$ooai:juser.fz-juelich.de:902739$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133954$$aForschungszentrum Jülich$$b9$$kFZJ
000902739 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000902739 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000902739 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000902739 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-29
000902739 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-29
000902739 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000902739 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902739 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN : 2019$$d2021-01-29
000902739 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bBRAIN : 2019$$d2021-01-29
000902739 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-29
000902739 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000902739 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-01-29
000902739 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000902739 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000902739 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000902739 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000902739 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-29
000902739 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000902739 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000902739 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000902739 9801_ $$aFullTexts
000902739 980__ $$ajournal
000902739 980__ $$aVDB
000902739 980__ $$aUNRESTRICTED
000902739 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000902739 981__ $$aI:(DE-Juel1)PGI-4-20110106