000902742 001__ 902742
000902742 005__ 20240313103129.0
000902742 0247_ $$2Handle$$a2128/29264
000902742 037__ $$aFZJ-2021-04524
000902742 041__ $$aEnglish
000902742 1001_ $$0P:(DE-Juel1)178725$$aBouss, Peter$$b0$$eCorresponding author$$ufzj
000902742 1112_ $$aNeuroscience 2021 - 50th Annual Meeting$$cOnline$$d2021-11-08 - 2021-11-11$$wUSA
000902742 245__ $$aSurrogate methods for robust significance evaluation of spike patterns in non-Poisson data
000902742 260__ $$c2021
000902742 3367_ $$033$$2EndNote$$aConference Paper
000902742 3367_ $$2BibTeX$$aINPROCEEDINGS
000902742 3367_ $$2DRIVER$$aconferenceObject
000902742 3367_ $$2ORCID$$aCONFERENCE_POSTER
000902742 3367_ $$2DataCite$$aOutput Types/Conference Poster
000902742 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1638370076_8351$$xAfter Call
000902742 520__ $$aSpatio-temporal spike patterns were suggested as indications of active cell assemblies. We developed the SPADE method [1-3] to detect significant spatio-temporal patterns (STPs) with millisecond accuracy. STPs are defined as repeating spike patterns across neurons with potential temporal delays between the spikes. The significance of STPs is derived by comparison to the null hypothesis of independence implemented by surrogate data. SPADE first discretizes the spike trains into bins of a few ms and clips bins with more than 1 spike to 1. The binarized spike trains are examined for STPs by counting repeated patterns using frequent itemset mining. The significance of STPs is evaluated by comparison to pattern counts derived from surrogate data, i.e., modifications of the original data intended to destroy potential spike correlation but under conservation of the firing rate profiles. To avoid false results, surrogate data are required to retain the statistical properties of the original data as close as possible. A classically chosen surrogate technique is Uniform Dithering (UD), which displaces each spike independently according to a uniform distribution. We find that UD surrogates applied to our data (motor cortex) contain fewer spikes than the original data. As a consequence, fewer patterns are expected and, thus, false positives may be generated. We identified as the reason for this spike reduction a change of the ISI distribution: UD surrogates are more Poisson-like than the original data which are in tendency more regular. Thus UD destroys a potential dead time and, therefore, spikes are clipped away.To overcome this problem, we studied several surrogate techniques, in particular methods that consider the ISI distribution, i.e., a modification of UD preserving the dead time, (UDD), (joint-)ISI dithering, trial shifting [4]. Another ansatz is a surrogate that shuffles bins of already discretized spike trains within a small window. We examined the surrogates for spike loss, ISI distribution, auto-correlation, and false positives when applied to different ground truth data sets. These are stationary point process models but also non-stationary point processes mimicking the statistical features of the experimental data. It turned out that trial-shuffling [4] best preserves the features of the original data and generates few false positives; we used it then for application to real data.References: [1] Torre et al (2016) DOI:10.1523/JNEUROSCI.4375-15.2016. [2] Quaglio et al. (2017). DOI:10.3389/fncom.2017.00041. [3] Stella et al. (2019). DOI:10.1016/j.biosystems.2019.104022. [4] Pipa et al. (2008) DOI: 10.1007/s10827-007-0065-3.
000902742 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000902742 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x1
000902742 536__ $$0G:(DE-HGF)ZT-I-0003$$aHAF - Helmholtz Analytics Framework (ZT-I-0003)$$cZT-I-0003$$x2
000902742 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x3
000902742 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x4
000902742 536__ $$0G:(GEPRIS)368482240$$aGRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)$$c368482240$$x5
000902742 7001_ $$0P:(DE-Juel1)171932$$aStella, Alessandra$$b1$$ufzj
000902742 7001_ $$0P:(DE-Juel1)172768$$aPalm, Günther$$b2$$ufzj
000902742 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b3$$ufzj
000902742 8564_ $$uhttps://juser.fz-juelich.de/record/902742/files/Poster-SFN-2021.pdf$$yOpenAccess
000902742 909CO $$ooai:juser.fz-juelich.de:902742$$pec_fundedresources$$pdriver$$pVDB$$popen_access$$popenaire
000902742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178725$$aForschungszentrum Jülich$$b0$$kFZJ
000902742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171932$$aForschungszentrum Jülich$$b1$$kFZJ
000902742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172768$$aForschungszentrum Jülich$$b2$$kFZJ
000902742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b3$$kFZJ
000902742 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000902742 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
000902742 9141_ $$y2021
000902742 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902742 920__ $$lyes
000902742 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000902742 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000902742 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000902742 9801_ $$aFullTexts
000902742 980__ $$aposter
000902742 980__ $$aVDB
000902742 980__ $$aUNRESTRICTED
000902742 980__ $$aI:(DE-Juel1)INM-6-20090406
000902742 980__ $$aI:(DE-Juel1)IAS-6-20130828
000902742 980__ $$aI:(DE-Juel1)INM-10-20170113
000902742 981__ $$aI:(DE-Juel1)IAS-6-20130828